Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VARCHAR support #227

Merged
merged 1 commit into from
Jan 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 16 additions & 30 deletions pantab/src/pantab.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -615,36 +615,22 @@ static auto makeReadHelper(const ArrowSchemaView *schema_view,
}
}

static auto
arrowTypeFromHyper(const hyperapi::SqlType &sqltype) -> enum ArrowType {
if (sqltype == hyperapi::SqlType::smallInt()){return NANOARROW_TYPE_INT16;}
else if (sqltype == hyperapi::SqlType::integer()) {
return NANOARROW_TYPE_INT32;
}
else if (sqltype == hyperapi::SqlType::bigInt()) {
return NANOARROW_TYPE_INT64;
}
else if (sqltype == hyperapi::SqlType::doublePrecision()) {
return NANOARROW_TYPE_DOUBLE;
}
else if (sqltype == hyperapi::SqlType::text()) {
return NANOARROW_TYPE_LARGE_STRING;
}
else if (sqltype == hyperapi::SqlType::boolean()) {
return NANOARROW_TYPE_BOOL;
}
else if (sqltype == hyperapi::SqlType::timestamp()) {
return NANOARROW_TYPE_TIMESTAMP;
}
else if (sqltype == hyperapi::SqlType::timestampTZ()) {
return NANOARROW_TYPE_TIMESTAMP; // todo: how to encode tz info?
}
else if (sqltype == hyperapi::SqlType::date()) {
return NANOARROW_TYPE_DATE32;
}

throw nb::type_error(
("unimplemented pandas dtype for type: " + sqltype.toString()).c_str());
static auto arrowTypeFromHyper(const hyperapi::SqlType &sqltype)
-> enum ArrowType {
switch (sqltype.getTag()){
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hmm this formatting from clang-format is terribly hard to read...wonder what is going on

case hyperapi::TypeTag::SmallInt : return NANOARROW_TYPE_INT16;
case hyperapi::TypeTag::Int : return NANOARROW_TYPE_INT32;
case hyperapi::TypeTag::BigInt : return NANOARROW_TYPE_INT64;
case hyperapi::TypeTag::Double : return NANOARROW_TYPE_DOUBLE;
case hyperapi::TypeTag::Varchar : case hyperapi::TypeTag::Char :
case hyperapi::TypeTag::Text : return NANOARROW_TYPE_LARGE_STRING;
case hyperapi::TypeTag::Bool : return NANOARROW_TYPE_BOOL;
case hyperapi::TypeTag::Date : return NANOARROW_TYPE_DATE32;
case hyperapi::TypeTag::Timestamp : case hyperapi::TypeTag::
TimestampTZ : return NANOARROW_TYPE_TIMESTAMP;
default : throw nb::type_error(
("Reader not implemented for type: " + sqltype.toString()).c_str());
}
}

static auto releaseArrowStream(void *ptr) noexcept -> void {
Expand Down
43 changes: 40 additions & 3 deletions pantab/tests/test_reader.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import pandas as pd
import pandas.testing as tm
import pytest
from tableauhyperapi import TableName
import tableauhyperapi as tab_api

import pantab

Expand Down Expand Up @@ -31,7 +31,7 @@ def test_reports_unsupported_type(datapath):

def test_read_non_roundtrippable(datapath):
result = pantab.frame_from_hyper(
datapath / "dates.hyper", table=TableName("Extract", "Extract")
datapath / "dates.hyper", table=tab_api.TableName("Extract", "Extract")
)
expected = pd.DataFrame(
[["1900-01-01", "2000-01-01"], [pd.NaT, "2050-01-01"]],
Expand All @@ -43,7 +43,8 @@ def test_read_non_roundtrippable(datapath):

def test_reads_non_writeable(datapath):
result = pantab.frame_from_hyper(
datapath / "non_pantab_writeable.hyper", table=TableName("public", "table")
datapath / "non_pantab_writeable.hyper",
table=tab_api.TableName("public", "table"),
)

expected = pd.DataFrame(
Expand Down Expand Up @@ -85,3 +86,39 @@ def test_empty_read_query(df: pd.DataFrame, roundtripped, tmp_hyper):

result = pantab.frame_from_hyper_query(tmp_hyper, query)
tm.assert_frame_equal(result, expected)


def test_read_varchar(tmp_hyper):
column_name = "VARCHAR Column"
table_name = tab_api.TableName("public", "table")
table = tab_api.TableDefinition(
table_name=table_name,
columns=[
tab_api.TableDefinition.Column(
name=column_name,
type=tab_api.SqlType.varchar(42),
nullability=tab_api.NOT_NULLABLE,
)
],
)

with tab_api.HyperProcess(
telemetry=tab_api.Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU
) as hyper:
with tab_api.Connection(
endpoint=hyper.endpoint,
database=tmp_hyper,
create_mode=tab_api.CreateMode.CREATE_AND_REPLACE,
) as connection:
connection.catalog.create_table(table_definition=table)

with tab_api.Inserter(connection, table) as inserter:
inserter.add_rows([["foo"], ["bar"]])
inserter.execute()

expected = pd.DataFrame(
[["foo"], ["bar"]], columns=[column_name], dtype="large_string[pyarrow]"
)

result = pantab.frame_from_hyper(tmp_hyper, table=table_name)
tm.assert_frame_equal(result, expected)
Loading