Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add sdpa for phi3 openvino model #705

Merged
merged 5 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions optimum/exporters/openvino/model_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -485,6 +485,12 @@ def patch_model_for_export(
library_name="transformers",
)
class Phi3OpenVINOConfig(PhiOnnxConfig):
DUMMY_INPUT_GENERATOR_CLASSES = (
MistralDummyPastKeyValuesGenerator,
) + TextDecoderOnnxConfig.DUMMY_INPUT_GENERATOR_CLASSES
DUMMY_PKV_GENERATOR_CLASS = MistralDummyPastKeyValuesGenerator
NORMALIZED_CONFIG_CLASS = NormalizedTextConfig.with_args(num_key_value_heads="num_key_value_heads", allow_new=True)

def patch_model_for_export(
self, model: Union["PreTrainedModel", "TFPreTrainedModel"], model_kwargs: Optional[Dict[str, Any]] = None
) -> "ModelPatcher":
Expand Down
90 changes: 89 additions & 1 deletion optimum/exporters/openvino/model_patcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -951,15 +951,103 @@ def __exit__(self, exc_type, exc_value, traceback):
block.attention.forward = block.attention._orig_forward


# Adapted from Phi3Attention.forward
def _phi3_self_attn_sdpa_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
return self._orig_forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)

from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

even if currently equivalent shouldn't be replace it with

Suggested change
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
from transformers.models.phi3.modeling_phi3 import apply_rotary_pos_emb, repeat_kv

to avoid any issue resulting from potential refactorization

Copy link
Collaborator Author

@eaidova eaidova May 15, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I believe it will breaks with current release, because phi3 code in transformers is not released yet on pypi... Can we add some TODO to change this in future (currently model is loaded using trust_remote_code using stable transformers release)?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes works for me, thanks @eaidova !


bsz, q_len, _ = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
query_pos = self.num_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]

query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)

query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)

# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()

attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

return attn_output, None, past_key_value


class Phi3ModelPatcher(DecoderModelPatcher):
def __enter__(self):
super().__enter__()

# https://github.com/huggingface/transformers/blob/30ee508c6c92a1c0aa0281d193c7c0fb815b8d2f/src/transformers/models/phi3/modeling_phi3.py#L113
# init inv_freq for torchscript tracing
for layer in self._model.model.layers:
if is_torch_version(">=", "2.1.0"):
orig_self_attn_fwd = layer.self_attn.forward
layer.self_attn.forward = types.MethodType(_phi3_self_attn_sdpa_forward, layer.self_attn)
layer.self_attn._orig_forward = orig_self_attn_fwd

if layer.self_attn.rotary_emb.inv_freq is None:
rotary_emb = layer.self_attn.rotary_emb
layer.self_attn.rotary_emb.inv_freq = 1.0 / (
rotary_emb.base ** (torch.arange(0, rotary_emb.dim, 2, dtype=torch.int64).float() / rotary_emb.dim)
)

def __exit__(self, exc_type, exc_value, traceback):
super().__exit__(exc_type, exc_value, traceback)
for layer in self._model.model.layers:
if hasattr(layer.self_attn, "_orig_forward"):
layer.self_attn.forward = layer.self_attn._orig_forward
Loading