Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs(mpc_lateral_controller): modify mathjax visualization error #6486

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ In the linear MPC formulation, all motion and constraint expressions are linear.

$$
\begin{gather}
x_{k+1}=Ax_{k}+Bu_{k}+w_{k}, y_{k}=Cx_{k} \tag{1} \\
x_{k+1}=Ax_{k}+Bu_{k}+w_{k}, y_{k}=Cx_{k} \tag{1} \\\
x_{k}\in R^{n},u_{k}\in R^{m},w_{k}\in R^{n}, y_{k}\in R^{l}, A\in R^{n\times n}, B\in R^{n\times m}, C\in R^{l \times n}
\end{gather}
$$
Expand All @@ -47,29 +47,29 @@ Then, when $k=2$, using also equation (2), we get

$$
\begin{align}
x_{2} & = Ax_{1} + Bu_{1} + w_{1} \\
& = A(Ax_{0} + Bu_{0} + w_{0}) + Bu_{1} + w_{1} \\
& = A^{2}x_{0} + ABu_{0} + Aw_{0} + Bu_{1} + w_{1} \\
& = A^{2}x_{0} + \begin{bmatrix}AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \end{bmatrix} + \begin{bmatrix}A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \end{bmatrix} \tag{3}
x_{2} & = Ax_{1} + Bu_{1} + w_{1} \\\
& = A(Ax_{0} + Bu_{0} + w_{0}) + Bu_{1} + w_{1} \\\
& = A^{2}x_{0} + ABu_{0} + Aw_{0} + Bu_{1} + w_{1} \\\
& = A^{2}x_{0} + \begin{bmatrix}AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \end{bmatrix} + \begin{bmatrix}A & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \end{bmatrix} \tag{3}
\end{align}
$$

When $k=3$ , from equation (3)

$$
\begin{align}
x_{3} & = Ax_{2} + Bu_{2} + w_{2} \\
& = A(A^{2}x_{0} + ABu_{0} + Bu_{1} + Aw_{0} + w_{1} ) + Bu_{2} + w_{2} \\
& = A^{3}x_{0} + A^{2}Bu_{0} + ABu_{1} + A^{2}w_{0} + Aw_{1} + Bu_{2} + w_{2} \\
& = A^{3}x_{0} + \begin{bmatrix}A^{2}B & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ u_{2} \end{bmatrix} + \begin{bmatrix} A^{2} & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ w_{2} \end{bmatrix} \tag{4}
x_{3} & = Ax_{2} + Bu_{2} + w_{2} \\\
& = A(A^{2}x_{0} + ABu_{0} + Bu_{1} + Aw_{0} + w_{1} ) + Bu_{2} + w_{2} \\\
& = A^{3}x_{0} + A^{2}Bu_{0} + ABu_{1} + A^{2}w_{0} + Aw_{1} + Bu_{2} + w_{2} \\\
& = A^{3}x_{0} + \begin{bmatrix}A^{2}B & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ u_{2} \end{bmatrix} + \begin{bmatrix} A^{2} & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \\\ w_{2} \end{bmatrix} \tag{4}
\end{align}
$$

If $k=n$ , then

$$
\begin{align}
x_{n} = A^{n}x_{0} + \begin{bmatrix}A^{n-1}B & A^{n-2}B & \dots & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ \vdots \\ u_{n-1} \end{bmatrix} + \begin{bmatrix} A^{n-1} & A^{n-2} & \dots & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ \vdots \\ w_{n-1} \end{bmatrix}
x_{n} = A^{n}x_{0} + \begin{bmatrix}A^{n-1}B & A^{n-2}B & \dots & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ \vdots \\\ u_{n-1} \end{bmatrix} + \begin{bmatrix} A^{n-1} & A^{n-2} & \dots & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \\\ \vdots \\\ w_{n-1} \end{bmatrix}
\tag{5}
\end{align}
$$
Expand All @@ -78,8 +78,8 @@ Putting all of them together with (2) to (5) yields the following matrix equatio

$$
\begin{align}
\begin{bmatrix}x_{1}\\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix}A^{1}\\ A^{2} \\ A^{3} \\ \vdots \\ A^{n} \end{bmatrix}x_{0} + \begin{bmatrix}B & 0 & \dots & & 0 \\ AB & B & 0 & \dots & 0 \\ A^{2}B & AB & B & \dots & 0 \\ \vdots & \vdots & & & 0 \\ A^{n-1}B & A^{n-2}B & \dots & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ u_{2} \\ \vdots \\ u_{n-1} \end{bmatrix} \\ +
\begin{bmatrix}I & 0 & \dots & & 0 \\ A & I & 0 & \dots & 0 \\ A^{2} & A & I & \dots & 0 \\ \vdots & \vdots & & & 0 \\ A^{n-1} & A^{n-2} & \dots & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ w_{2} \\ \vdots \\ w_{n-1} \end{bmatrix}
\begin{bmatrix}x_{1}\\\ x_{2} \\\ x_{3} \\\ \vdots \\\ x_{n} \end{bmatrix} = \begin{bmatrix}A^{1}\\\ A^{2} \\\ A^{3} \\\ \vdots \\\ A^{n} \end{bmatrix}x_{0} + \begin{bmatrix}B & 0 & \dots & & 0 \\\ AB & B & 0 & \dots & 0 \\\ A^{2}B & AB & B & \dots & 0 \\\ \vdots & \vdots & & & 0 \\\ A^{n-1}B & A^{n-2}B & \dots & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ u_{2} \\\ \vdots \\\ u_{n-1} \end{bmatrix} \\\ +
\begin{bmatrix}I & 0 & \dots & & 0 \\\ A & I & 0 & \dots & 0 \\\ A^{2} & A & I & \dots & 0 \\\ \vdots & \vdots & & & 0 \\\ A^{n-1} & A^{n-2} & \dots & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \\\ w_{2} \\\ \vdots \\\ w_{n-1} \end{bmatrix}
\tag{6}
\end{align}
$$
Expand All @@ -88,7 +88,7 @@ In this case, the measurements (outputs) become; $y_{k}=Cx_{k}$, so

$$
\begin{align}
\begin{bmatrix}y_{1}\\ y_{2} \\ y_{3} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix}C & 0 & \dots & & 0 \\ 0 & C & 0 & \dots & 0 \\ 0 & 0 & C & \dots & 0 \\ \vdots & & & \ddots & 0 \\ 0 & \dots & 0 & 0 & C \end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} \tag{7}
\begin{bmatrix}y_{1}\\\ y_{2} \\\ y_{3} \\\ \vdots \\\ y_{n} \end{bmatrix} = \begin{bmatrix}C & 0 & \dots & & 0 \\\ 0 & C & 0 & \dots & 0 \\\ 0 & 0 & C & \dots & 0 \\\ \vdots & & & \ddots & 0 \\\ 0 & \dots & 0 & 0 & C \end{bmatrix}\begin{bmatrix}x_{1}\\\ x_{2} \\\ x_{3} \\\ \vdots \\\ x_{n} \end{bmatrix} \tag{7}
\end{align}
$$

Expand Down Expand Up @@ -124,8 +124,8 @@ Substituting equation (8) into equation (9) and tidying up the equation for $U$.

$$
\begin{align}
J(U) &= (H(Fx_{0}+GU+SW)-Y_{ref})^{T}Q(H(Fx_{0}+GU+SW)-Y_{ref})+(U-U_{ref})^{T}R(U-U_{ref}) \\
& =U^{T}(G^{T}H^{T}QHG+R)U+2\left\{(H(Fx_{0}+SW)-Y_{ref})^{T}QHG-U_{ref}^{T}R\right\}U +(\rm{constant}) \tag{10}
J(U) &= (H(Fx_{0}+GU+SW)-Y_{ref})^{T}Q(H(Fx_{0}+GU+SW)-Y_{ref})+(U-U_{ref})^{T}R(U-U_{ref}) \\\
& =U^{T}(G^{T}H^{T}QHG+R)U+2\lbrace\{(H(Fx_{0}+SW)-Y_{ref})^{T}QHG-U_{ref}^{T}R\rbrace\}U +(\rm{constant}) \tag{10}
\end{align}
$$

Expand All @@ -141,9 +141,9 @@ For a nonlinear kinematic vehicle model, the discrete-time update equations are

$$
\begin{align}
x_{k+1} &= x_{k} + v\cos\theta_{k} \text{d}t \\
y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t \tag{11} \\
x_{k+1} &= x_{k} + v\cos\theta_{k} \text{d}t \\\
y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\\
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t \tag{11} \\\
\delta_{k+1} &= \delta_{k} - \tau^{-1}\left(\delta_{k}-\delta_{des}\right)\text{d}t
\end{align}
$$
Expand Down Expand Up @@ -171,9 +171,9 @@ We make small angle assumptions for the following derivations of linear equation

$$
\begin{align}
y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\
y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\\
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t - \kappa_{r}v\cos\theta_{k}\text{d}t
\tag{12} \\
\tag{12} \\\
\delta_{k+1} &= \delta_{k} - \tau^{-1}\left(\delta_{k}-\delta_{des}\right)\text{d}t
\end{align}
$$
Expand Down Expand Up @@ -202,9 +202,9 @@ Substituting this equation into equation (12), and approximate $\Delta\delta$ to

$$
\begin{align}
\tan\delta &\simeq \tan\delta_{r} + \frac{\text{d}\tan\delta}{\text{d}\delta} \Biggm|_{\delta=\delta_{r}}\Delta\delta \\
&= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\Delta\delta \\
&= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\left(\delta-\delta_{r}\right) \\
\tan\delta &\simeq \tan\delta_{r} + \frac{\text{d}\tan\delta}{\text{d}\delta} \Biggm|_{\delta=\delta_{r}}\Delta\delta \\\
&= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\Delta\delta \\\
&= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\left(\delta-\delta_{r}\right) \\\
&= \tan \delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta
\end{align}
$$
Expand All @@ -213,9 +213,9 @@ Using this, $\theta_{k+1}$ can be expressed

$$
\begin{align}
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L}\text{d}t - \kappa_{r}v\cos\delta_{k}\text{d}t \\
&\simeq \theta_{k} + \frac{v}{L}\text{d}t\left(\tan\delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\
&= \theta_{k} + \frac{v}{L}\text{d}t\left(L\kappa_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L}\text{d}t - \kappa_{r}v\cos\delta_{k}\text{d}t \\\
&\simeq \theta_{k} + \frac{v}{L}\text{d}t\left(\tan\delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\\
&= \theta_{k} + \frac{v}{L}\text{d}t\left(L\kappa_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\\
&= \theta_{k} + \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}}\delta_{k} - \frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}}
\end{align}
$$
Expand All @@ -224,7 +224,7 @@ Finally, the linearized time-varying model equation becomes;

$$
\begin{align}
\begin{bmatrix} y_{k+1} \\ \theta_{k+1} \\ \delta_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & v\text{d}t & 0 \\ 0 & 1 & \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}} \\ 0 & 0 & 1 - \tau^{-1}\text{d}t \end{bmatrix} \begin{bmatrix} y_{k} \\ \theta_{k} \\ \delta_{k} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \tau^{-1}\text{d}t \end{bmatrix}\delta_{des} + \begin{bmatrix} 0 \\ -\frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}} \\ 0 \end{bmatrix}
\begin{bmatrix} y_{k+1} \\\ \theta_{k+1} \\\ \delta_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & v\text{d}t & 0 \\\ 0 & 1 & \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}} \\\ 0 & 0 & 1 - \tau^{-1}\text{d}t \end{bmatrix} \begin{bmatrix} y_{k} \\\ \theta_{k} \\\ \delta_{k} \end{bmatrix} + \begin{bmatrix} 0 \\\ 0 \\\ \tau^{-1}\text{d}t \end{bmatrix}\delta_{des} + \begin{bmatrix} 0 \\\ -\frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}} \\\ 0 \end{bmatrix}
\end{align}
$$

Expand All @@ -243,23 +243,23 @@ Using this equation, write down the update equation likewise (2) ~ (6)
$$
\begin{align}
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}
x_{1} \\\ x_{2} \\\ x_{3} \\\ \vdots \\\ x_{n}
\end{bmatrix}
= \begin{bmatrix}
A_{1} \\ A_{1}A_{0} \\ A_{2}A_{1}A_{0} \\ \vdots \\ \prod_{i=0}^{n-1} A_{k}
A_{1} \\\ A_{1}A_{0} \\\ A_{2}A_{1}A_{0} \\\ \vdots \\\ \prod_{i=0}^{n-1} A_{k}
\end{bmatrix}
x_{0} +
\begin{bmatrix}
B_{0} & 0 & \dots & & 0 \\ A_{1}B_{0} & B_{1} & 0 & \dots & 0 \\ A_{2}A_{1}B_{0} & A_{2}B_{1} & B_{2} & \dots & 0 \\ \vdots & \vdots & &\ddots & 0 \\ \prod_{i=1}^{n-1} A_{k}B_{0} & \prod_{i=2}^{n-1} A_{k}B_{1} & \dots & A_{n-1}B_{n-1} & B_{n-1}
B_{0} & 0 & \dots & & 0 \\\ A_{1}B_{0} & B_{1} & 0 & \dots & 0 \\\ A_{2}A_{1}B_{0} & A_{2}B_{1} & B_{2} & \dots & 0 \\\ \vdots & \vdots & &\ddots & 0 \\\ \prod_{i=1}^{n-1} A_{k}B_{0} & \prod_{i=2}^{n-1} A_{k}B_{1} & \dots & A_{n-1}B_{n-1} & B_{n-1}
\end{bmatrix}
\begin{bmatrix}
u_{0} \\ u_{1} \\ u_{2} \\ \vdots \\ u_{n-1}
u_{0} \\\ u_{1} \\\ u_{2} \\\ \vdots \\\ u_{n-1}
\end{bmatrix} +
\begin{bmatrix}
I & 0 & \dots & & 0 \\ A_{1} & I & 0 & \dots & 0 \\ A_{2}A_{1} & A_{2} & I & \dots & 0 \\ \vdots & \vdots & &\ddots & 0 \\ \prod_{i=1}^{n-1} A_{k} & \prod_{i=2}^{n-1} A_{k} & \dots & A_{n-1} & I
I & 0 & \dots & & 0 \\\ A_{1} & I & 0 & \dots & 0 \\\ A_{2}A_{1} & A_{2} & I & \dots & 0 \\\ \vdots & \vdots & &\ddots & 0 \\\ \prod_{i=1}^{n-1} A_{k} & \prod_{i=2}^{n-1} A_{k} & \dots & A_{n-1} & I
\end{bmatrix}
\begin{bmatrix}
w_{0} \\ w_{1} \\ w_{2} \\ \vdots \\ w_{n-1}
w_{0} \\\ w_{1} \\\ w_{2} \\\ \vdots \\\ w_{n-1}
\end{bmatrix}
\end{align}
$$
Expand All @@ -280,7 +280,7 @@ As an example, let's determine the weight matrix $Q_{1}$ of the evaluation funct

$$
\begin{align}
Q_{1} = \begin{bmatrix} q_{e} & 0 & 0 & 0 & 0& 0 \\ 0 & q_{\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q_{e} & 0 & 0 \\ 0 & 0 & 0 & 0 & q_{\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
Q_{1} = \begin{bmatrix} q_{e} & 0 & 0 & 0 & 0& 0 \\\ 0 & q_{\theta} & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & q_{e} & 0 & 0 \\\ 0 & 0 & 0 & 0 & q_{\theta} & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\end{align}
$$

Expand All @@ -302,7 +302,7 @@ For instance, write $Q_{2}$ as follows for the $n=2$ system.

$$
\begin{align}
Q_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & q_{d} & 0 & 0 & -q_{d} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -q_{d} & 0 & 0 & q_{d} \end{bmatrix}
Q_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & q_{d} & 0 & 0 & -q_{d} \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & -q_{d} & 0 & 0 & q_{d} \end{bmatrix}
\end{align}
$$

Expand Down Expand Up @@ -340,35 +340,35 @@ We can also put constraints on the input deviations. As the derivative of steeri

$$
\begin{align}
\dot{u}_{min} < \dot{u} < \dot{u}_{max}
\dot u_{min} < \dot u < \dot u_{max}
\end{align}
$$

We discretize $\dot{u}$ as $\left(u_{k} - u_{k-1}\right)/\text{d}t$ and multiply both sides by dt, and the resulting constraint become linear and convex

$$
\begin{align}
\dot{u}_{min}\text{d}t < u_{k} - u_{k-1} < \dot{u}_{max}\text{d}t
\dot u_{min}\text{d}t < u_{k} - u_{k-1} < \dot u_{max}\text{d}t
\end{align}
$$

Along the prediction or control horizon, i.e for setting $n=3$

$$
\begin{align}
\dot{u}_{min}\text{d}t < u_{1} - u_{0} < \dot{u}_{max}\text{d}t \\
\dot{u}_{min}\text{d}t < u_{2} - u_{1} < \dot{u}_{max}\text{d}t
\dot u_{min}\text{d}t < u_{1} - u_{0} < \dot u_{max}\text{d}t \\\
\dot u_{min}\text{d}t < u_{2} - u_{1} < \dot u_{max}\text{d}t
\end{align}
$$

and aligning the inequality signs

$$
\begin{align}
u_{1} - u_{0} &< \dot{u}_{max}\text{d}t \\ +
u_{1} + u_{0} &< -\dot{u}_{min}\text{d}t \\
u_{2} - u_{1} &< \dot{u}_{max}\text{d}t \\ +
u_{2} + u_{1} &< - \dot{u}_{min}\text{d}t
u_{1} - u_{0} &< \dot u_{max}\text{d}t \\\ +
u_{1} + u_{0} &< -\dot u_{min}\text{d}t \\\
u_{2} - u_{1} &< \dot u_{max}\text{d}t \\\ +
u_{2} + u_{1} &< - \dot u_{min}\text{d}t
\end{align}
$$

Expand All @@ -384,6 +384,6 @@ Thus, putting this inequality to fit the form above, the constraints against $\d

$$
\begin{align}
\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} u_{0} \\ u_{1} \\ u_{2} \end{bmatrix} \leq \begin{bmatrix} \dot{u}_{max}\text{d}t \\ -\dot{u}_{min}\text{d}t \\ \dot{u}_{max}\text{d}t \\ -\dot{u}_{min}\text{d}t \end{bmatrix}
\begin{bmatrix} -1 & 1 & 0 \\\ 1 & -1 & 0 \\\ 0 & -1 & 1 \\\ 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} u_{0} \\\ u_{1} \\\ u_{2} \end{bmatrix} \leq \begin{bmatrix} \dot u_{max}\text{d}t \\\ -\dot u_{min}\text{d}t \\\ \dot u_{max}\text{d}t \\\ -\dot u_{min}\text{d}t \end{bmatrix}
\end{align}
$$
Loading