-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
172 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
from typing import Optional | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
import zfit | ||
import zfit.z.numpy as znp | ||
from zfit import z | ||
from zfit.core.space import ANY_LOWER, ANY_UPPER, Space | ||
from zfit.util import ztyping | ||
|
||
|
||
@z.function(wraps="tensor") | ||
def novosibirsk_pdf(x, peak, width, tail): | ||
"""Calculate the Novosibirsk PDF. | ||
Args: | ||
x: value(s) for which the PDF will be calculated. | ||
peak: peak of the distribution. | ||
width: width of the distribution. | ||
tail: tail of the distribution. | ||
Returns: | ||
`tf.Tensor`: The calculated PDF values. | ||
Notes: | ||
Function taken from H. Ikeda et al. NIM A441 (2000), p. 401 (Belle Collaboration) | ||
Based on code from `ROOT <https://root.cern.ch/doc/master/Novosibirsk_8cxx_source.html>`_ | ||
""" | ||
x = z.unstack_x(x) | ||
|
||
cond1 = znp.less(znp.abs(tail), 1e-7) | ||
arg = 1.0 - (x - peak) * tail / width | ||
|
||
cond2 = znp.less(arg, 1e-7) | ||
log_arg = znp.log(arg) | ||
xi = 2 * np.sqrt(np.log(4.0)) | ||
|
||
width_zero = (2.0 / xi) * znp.arcsinh(tail * xi * 0.5) | ||
width_zero2 = width_zero**2 | ||
exponent = (-0.5 / width_zero2 * log_arg**2) - (width_zero2 * 0.5) | ||
|
||
gauss = znp.exp(-0.5 * ((x - peak) / width) ** 2) | ||
|
||
return znp.where(cond1, gauss, znp.where(cond2, 0.0, znp.exp(exponent))) | ||
|
||
|
||
def novosibirsk_integral(limits: ztyping.SpaceType, params: dict, model) -> tf.Tensor: | ||
"""Calculates the analytic integral of the Novosibirsk PDF. | ||
Args: | ||
limits: An object with attribute limit1d. | ||
params: A hashmap from which the parameters that defines the PDF will be extracted. | ||
model: Will be ignored. | ||
Returns: | ||
The calculated integral. | ||
""" | ||
lower, upper = limits.limit1d | ||
peak = params["mu"] | ||
width = params["sigma"] | ||
tail = params["Lambda"] | ||
|
||
return novosibirsk_integral_func(peak=peak, width=width, tail=tail, lower=lower, upper=upper) | ||
|
||
|
||
@z.function(wraps="tensor") | ||
def novosibirsk_integral_func(peak, width, tail, lower, upper): | ||
"""Calculate the integral of the Novosibirsk PDF. | ||
Args: | ||
peak: peak of the distribution. | ||
width: width of the distribution. | ||
tail: tail of the distribution. | ||
lower: lower limit of the integral. | ||
upper: upper limit of the integral. | ||
Returns: | ||
`tf.Tensor`: The calculated integral. | ||
Notes: | ||
Based on code from `ROOT <https://root.cern.ch/doc/master/Novosibirsk_8cxx_source.html>`_ | ||
""" | ||
sqrt2 = np.sqrt(2) | ||
sqlog2 = np.sqrt(np.log(2)) | ||
sqlog4 = np.sqrt(np.log(4)) | ||
log4 = np.log(4) | ||
rootpiby2 = np.sqrt(np.pi / 2) | ||
sqpibylog2 = np.sqrt(np.pi / np.log(2)) | ||
|
||
cond = znp.less(znp.abs(tail), 1e-7) | ||
|
||
xscale = sqrt2 * width | ||
result_gauss = rootpiby2 * width * (tf.math.erf((upper - peak) / xscale) - tf.math.erf((lower - peak) / xscale)) | ||
|
||
log_argument_A = znp.maximum(((peak - lower) * tail + width) / width, 1e-7) | ||
log_argument_B = znp.maximum(((peak - upper) * tail + width) / width, 1e-7) | ||
|
||
term1 = znp.arcsinh(tail * sqlog4) | ||
term1_2 = term1**2 | ||
erf_termA = (term1_2 - log4 * znp.log(log_argument_A)) / (2 * term1 * sqlog2) | ||
erf_termB = (term1_2 - log4 * znp.log(log_argument_B)) / (2 * term1 * sqlog2) | ||
|
||
result_novosibirsk = 0.5 / tail * width * term1 * (tf.math.erf(erf_termB) - tf.math.erf(erf_termA)) * sqpibylog2 | ||
|
||
return znp.where(cond, result_gauss, result_novosibirsk) | ||
|
||
|
||
class Novosibirsk(zfit.pdf.BasePDF): | ||
_N_OBS = 1 | ||
|
||
def __init__( | ||
self, | ||
mu, | ||
sigma, | ||
Lambda, | ||
obs, | ||
*, | ||
extended: Optional[ztyping.ExtendedInputType] = None, | ||
norm: Optional[ztyping.NormInputType] = None, | ||
name: str = "Novosibirsk", | ||
): | ||
"""Novosibirsk PDF. | ||
The Novosibirsk function is a continuous probability density function (PDF) that is used to model | ||
asymmetric peaks in high-energy physics. It is a theoretical Compton spectrum with a logarithmic Gaussian function. | ||
.. math:: | ||
f(x;\\sigma, x_0, \\Lambda) = \\exp\\left[ | ||
-\\frac{1}{2} \\frac{\\left( \\ln q_y \\right)^2 }{\\Lambda^2} + \\Lambda^2 \\right] \\\\ | ||
q_y(x;\\sigma,x_0,\\Lambda) = 1 + \\frac{\\Lambda(x-x_0)}{\\sigma} \\times | ||
\\frac{\\sinh \\left( \\Lambda \\sqrt{\\ln 4} \\right)}{\\Lambda \\sqrt{\\ln 4}} | ||
Args: | ||
mu: The peak of the distribution. | ||
sigma: The width of the distribution. | ||
Lambda: The tail of the distribution. | ||
obs: |@doc:pdf.init.obs| Observables of the | ||
model. This will be used as the default space of the PDF and, | ||
if not given explicitly, as the normalization range. | ||
The default space is used for example in the sample method: if no | ||
sampling limits are given, the default space is used. | ||
The observables are not equal to the domain as it does not restrict or | ||
truncate the model outside this range. |@docend:pdf.init.obs| | ||
extended: |@doc:pdf.init.extended| The overall yield of the PDF. | ||
If this is parameter-like, it will be used as the yield, | ||
the expected number of events, and the PDF will be extended. | ||
An extended PDF has additional functionality, such as the | ||
``ext_*`` methods and the ``counts`` (for binned PDFs). |@docend:pdf.init.extended| | ||
norm: |@doc:pdf.init.norm| Normalization of the PDF. | ||
By default, this is the same as the default space of the PDF. |@docend:pdf.init.norm| | ||
name: |@doc:pdf.init.name| Human-readable name | ||
or label of | ||
the PDF for better identification. | ||
Has no programmatical functional purpose as identification. |@docend:pdf.init.name| | ||
""" | ||
params = {"mu": mu, "sigma": sigma, "Lambda": Lambda} | ||
super().__init__(obs=obs, params=params, name=name, extended=extended, norm=norm) | ||
|
||
def _unnormalized_pdf(self, x): | ||
mu = self.params["mu"] | ||
sigma = self.params["sigma"] | ||
Lambda = self.params["Lambda"] | ||
return novosibirsk_pdf(x, peak=mu, width=sigma, tail=Lambda) | ||
|
||
|
||
novosibirsk_integral_limits = Space(axes=0, limits=(ANY_LOWER, ANY_UPPER)) | ||
Novosibirsk.register_analytic_integral(func=novosibirsk_integral, limits=novosibirsk_integral_limits) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters