-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
264 lines (193 loc) · 6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//#include<opencv2/opencv.hpp>
//#include<opencv2/core.hpp>
#include<iostream>
//#include"WinVisualization.h" // 시각화 차트
#define _CUDA_GPU_ // GPU 사용
//#include"SimpleCNN.h"
#ifdef _CUDA_GPU_
//#include"kernel.cuh"
#include"kernelTest.cuh"
#endif //__CUDACC__
//using namespace cv;
//using namespace std;
//using namespace img_read;
//using namespace cnn;
//#include"test.h"
//#define __CUDACC__
// 메인부분
/*
#if !defined(TEST) && !defined(TEST2)
int sum_int(int a, int b);
int sum_int(int a, int b) {
int c;
c = a + b;
return c;
}
#ifdef __CUDACC__
int main() {
cout << "테스트";
return 0;
}
#else
int main(void) {
int a = 7, b = 5, c, d;
c = sum_int(7, 5);
GPU_TEST gpu_test;
gpu_test.sum_cuda(a, b, &d);
printf_s("CPU : %d + %d = %d \n",a,b,c);
printf_s("GPU : %d + %d = %d \n",a,b,d);
return 0;
}
#endif
*/
#ifdef _CUDA_GPU_ // test
int main() {
int a = 5;
int b = 7;
int result;
//sum_cuda(a, b, &result);
printf("결과: %d", result);
return 0;
}
#endif
#ifndef _CUDA_GPU_
int main(void) {
std::cout << "테스트";
V4D dataset = V4D(1000, V3D(3, V2D(100, V1D(100, 0.0f))));
RandomGen* randFloat = new RandomGen(0.0f, 1.0f);
RandomGen* randInt = new RandomGen(0, 9);
V1D label = V1D(1000, 0.0f);
for (int i = 0; i < dataset.size(); ++i) {
randFloat->randGen(dataset[i], false);
//randInt->randGenInt(label[i]);
}
CNN* cnn = new CNN(dataset, label);
cnn->add(new Conv(3, 8, 1, 1, ACTIVATION::TanH));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Padding(1));
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::ReLU));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Padding(2));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Pooling(POOLING::Min));
cnn->add(new Pooling(POOLING::Min));
//cnn->add(new Pooling(POOLING::Min));
//cnn->add(new Pooling(POOLING::Min));
cnn->add(new Flatten());
cnn->add(new FullyConnected(64, ACTIVATION::Maxout));
cnn->add(new FullyConnected(32, ACTIVATION::Sigmoid));
cnn->add(new FullyConnected(16, ACTIVATION::ReLU));
cnn->add(new FullyConnected(10, ACTIVATION::Softmax));
cnn->compile(OPTIMIZER::Momentum, LOSS::CategoricalCrossentropy);
cnn->fit(1, 100);
//ConvGPU gpu;
//PrintTest p;
//p.printTestV4D(gpu.calculateGPU(dataset), "CONV GPU");
//gpu.filter2col()
//WinApp* app = new WinApp({ 50 , 100 , 150 , 200 , 250, 300 }, { 100 , 50 , 200 , 150 , 250, 400 }, "X Axis", "Y Axis");
//app->Run();
return 0;
}
//#else
int main(void) {
//Directory* dirent = new Directory("C:\\Users\\이상민\\source\\repos\\SimpleCNN_image\\SimpleCNN_image\\이미지테스트\\Humans", img_read::FILENAME_EXTENSION::JPG);
V4D dataset = V4D(500, V3D(3, V2D(28, V1D(28, 0.0f))));
RandomGen* randFloat = new RandomGen(0.0f, 1.0f);
RandomGen* randInt = new RandomGen(0,9);
V1D label = V1D(500, 0.0f);
for (int i = 0; i < dataset.size(); ++i) {
randFloat->randGen(dataset[i], false);
//randInt->randGenInt(label[i]);
}
CNN* cnn = new CNN(dataset, label);
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::ReLU));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Padding(1));
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::ReLU));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::ReLU));
cnn->add(new Padding(2));
///cnn->add(new Pooling(POOLING::Max));
///cnn->add(new Pooling(POOLING::Min));
///cnn->add(new Pooling(POOLING::Min));
cnn->add(new Flatten());
cnn->add(new FullyConnected(64, ACTIVATION::ReLU));
cnn->add(new FullyConnected(32, ACTIVATION::Sigmoid));
cnn->add(new FullyConnected(16, ACTIVATION::ReLU));
cnn->add(new FullyConnected(10, ACTIVATION::Softmax));
cnn->compile(OPTIMIZER::Momentum, LOSS::CategoricalCrossentropy);
cnn->fit(1, 100);
//cnn->save("cnn_test.txt");
//cnn->load("cnn_test.txt");
//V1D predictions = cnn->predict(dirent->getImageSet());
//cnn->accuracy(predictions, label->getLabel());
return 0;
}
/*
int main(void) {
Directory* dirent = new Directory("C:\\Users\\이상민\\source\\repos\\SimpleCNN_image\\SimpleCNN_image\\이미지테스트\\Humans",img_read::FILENAME_EXTENSION::JPG);
FileRead* label = new FileRead("C:\\Users\\이상민\\source\\repos\\SimpleCNN_image\\SimpleCNN_image\\HumanLabel.csv");
V4D dataset = dirent->getImageSet();
std::cout << "로그 Conv 입력데이터:" << dataset.size() << " ";
std::cout << dataset[0].size() << " ";
std::cout << dataset[0][0].size() << " ";
std::cout << dataset[0][0][0].size() << "\n";
CNN* cnn = new CNN(dirent->getImageSet(), label->getLabel());
//cnn->splitTrainTest(0.3);
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::TanH));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Padding(1));
cnn->add(new Conv(3, 3, 1, 1, ACTIVATION::ReLU));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Padding(1));
cnn->add(new Pooling(POOLING::Min));
cnn->add(new Pooling(POOLING::Average));
cnn->add(new Pooling(POOLING::Max));
cnn->add(new Pooling(POOLING::Min));
cnn->add(new Pooling(POOLING::Min));
cnn->add(new Pooling(POOLING::Min));
cnn->add(new Flatten());
cnn->add(new FullyConnected(256, ACTIVATION::Maxout));
cnn->add(new FullyConnected(128, ACTIVATION::Sigmoid));
cnn->add(new FullyConnected(64, ACTIVATION::ReLU));
cnn->add(new FullyConnected(10, ACTIVATION::Softmax));
cnn->compile(OPTIMIZER::Momentum, LOSS::CategoricalCrossentropy);
cnn->fit(1,50);
cnn->save("cnn_test.txt");
cnn->load("cnn_test.txt");
V1D predictions = cnn->predict(dirent->getImageSet());
cnn->accuracy(predictions, label->getLabel());
return 0;
}*/
#endif
#ifdef TEST
#include"test.h"
/*
* 할일: 각 레이어별 calculate 함수 검사
* 검사되면 합치기
* 벡터 반환 왜 안돼는지 확인
*/
#include <random>
#include <vector>
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dis(1, 10000);
int main(void) {
V2D testVec2D = { {0.3f,-1.4f,2.0f,-1.7f},
{-2.3f,1.1f,1.9f,0.5f}
};
V2D label2D = { {0.0f,0.0f,1.0f,0.0f},
{1.0f,0.0f,2.0f,4.0f}
};
CNN* cnn = new CNN();
cout<< cnn->derivativeLossFunc(&testVec2D, &label2D);
return 0;
}
#endif
#ifdef TEST2
#include"test.h"
int main(void) {
test();
return 0;
}
#endif