-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.cuh
510 lines (423 loc) · 14.7 KB
/
kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#ifndef KERNEL_CUH
#define KERNEL_CUH
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "SimpleCNN.h"
#include<iostream>
using V1D = std::vector<float>;
using V2D = std::vector<V1D>;
using V3D = std::vector<V2D>;
using V4D = std::vector<V3D>;
using V5D = std::vector<V4D>;
#ifdef __cplusplus
extern "C" {
#endif
class RandomGPU {
private:
public:
};
class LayerGPU{
private:
V1D dummy1D;
V2D dummy2D;
V3D dummy3D;
V4D dummy4D;
public:
virtual V4D calculateGPU(V4D& data) { return dummy4D; }
virtual V2D calculateGPU(V2D& data) { return dummy2D; }
virtual V1D calculateGPU(V1D& data) { return dummy1D; }
virtual V2D* backwardGPU(V2D* delta) { return &dummy2D; }
};
class ActivationGPU : public LayerGPU {
public:
int test() { return 0; }
virtual V2D calculateGPU(V2D& data) override {
V2D dummy;
return dummy;
}
virtual V4D calculateGPU(V4D& data) override {
V4D dummy;
return dummy;
}
V2D* backwardGPU(V2D* delta) override {
return delta;
}
};
class PaddingGPU : public LayerGPU {
public:
V2D calculateGPU(V2D& data) override {
V2D dummy;
return dummy;
}
V2D* backwardGPU(V2D* delta) override {
return delta;
}
};
class ConvGPU : public LayerGPU {
private:
V3D* filter3D = nullptr;
//V1D* filter1D = nullptr;
ActivationGPU* activationGPU = nullptr;
unsigned int strideGPU;
unsigned int filterRowColGPU;
public:
ConvGPU(){
}
~ConvGPU() {
//delete filter3D;
}
virtual void setFilter3DGPU(V3D* filter) {
this->filter3D = filter;
}
void setStrideGPU(int stride) {
this->strideGPU = stride;
}
void setFilterRowColGPU(int filterRowCol) {
this->filterRowColGPU = filterRowCol;
}
virtual V4D calculateGPU(V4D& data) override {
std::cout << "Conv 시작\n";
/*
V2D image2D = im2col(X, 3, 8, 1);
V2D filter2DR = filter2col(&X, filter, 1);
V2D filter2D = transpose(filter2DR);
V2D result = V2D(image2D.size(), V1D(filter2D[0].size(), 0.0f));
imageXfilter(result, image2D, filter2D);
V4D end = col2im(result, X.size(), X[0].size(), X[0][0].size(), X[0][0][0].size(), 3, 8, 1);
*/
float** data2D = nullptr;
im2colGPU(data, filterRowColGPU,(*filter3D).size(), strideGPU, data2D);
//V2D data2D;
float** filter2D = nullptr;
filter2colGPU((*this->filter3D), strideGPU, filter2D);
V2D cal = imageXfilterGPU(data2D, filter2D);
V4D result = col2im(cal, data.size(), data[0].size(), data[0][0].size(), data[0][0][0].size(), filterRowColGPU, (*filter3D).size(), strideGPU);
//연산끝나면
//delete data2D
//delete filter2D
return result;
}
/*
V4D calculateGPU(V4D data) override {
float* dInput = nullptr;
float* dFilter = nullptr;
float* dOutput = nullptr;
int imageX = 224, imageY = 224, imageC = 3, dataSize = data.size();
int totalSize = imageX * imageY;
int dataZeroSize = data[0].size();
int filterX = (*filter3D)[0][0].size(), filterY = (*filter3D)[0].size(), filterCnt = (*filter3D).size();
for (int i = 0; i < dataSize; i++) {
for (int m = 0; m < imageC; m++) {
for (int j = 0; j < filterCnt; j++) {
for (int k = 0; k < (imageY - filterCnt) / stride + 1; k++) {
for (int l = 0; l < (imageX - filterX) / stride + 1; l++) {
}
}
}
}
}
}*/
/*
V4D calculateGPU(V4D data) override {
V4D actMap4D = V4D(data.size());
for (int i = 0; i < data.size(); i++) {
actMap4D[i].resize(data[i].size() * (*filter3D).size());
for (int j = 0; j < data[i].size(); j++)
for (int k = 0; k < (*filter3D).size(); k++)
for (int l = 0; l < (data[i][j].size() - (*filter3D)[0][0].size()) / stride + 1; l++)
actMap4D[i][j * (*filter3D).size() + k].push_back(vector<float>((data[i][j][l].size() - (*filter3D)[0][0].size()) / stride + 1));
}
float* dInput = nullptr;
float* dFilter = nullptr;
float* dOutput = nullptr;
int filter3DSize = (*this->filter3D).size() * (*this->filter3D)[0].size() * (*this->filter3D)[0][0].size() * sizeof(float);
cudaMalloc(&dInput, filter3DSize);
cudaMalloc(&dFilter, filter3DSize);
cudaMalloc(&dOutput, filter3DSize);
for (int i = 0; i < data.size(); i++) {
for (int m = 0; m < data[i].size(); m++) {
for (int j = 0; j < (*filter3D).size(); j++) {
for (int k = 0; k < (data[i][m].size() - (*filter3D)[0].size()) / stride + 1; k++) {
for (int l = 0; l < (data[i][m][k].size() - (*filter3D)[0][0].size()) / stride + 1; l++) {
float sum = 0.0;
for (int u = 0; u < (*filter3D)[0].size(); u++) {
for (int v = 0; v < (*filter3D)[0][0].size(); v++) {
sum += data[i][m][k * stride + u][l * stride + v] * (*filter3D)[j][u][v];
}
}
cudaMemcpy(dInput, data[i][m][k*stride][l*stride].data(), sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dFilter, (*this->filter1D).data(), sizeof(float), cudaMemcpyHostToDevice);
//actMap4D[i][m * filter3D->size() + j][k][l] = sum;
}
}
}
}
}
}*/
/*
V2D calculateGPU(V2D data) override {
// data는 항상 정사각형, 고정벡터여야함.
// 1차원이지만 3차원 x y c도 알고있어야함.
int imageX = 224;
int imageY = 224;
int imageC = 3;
int totalSize = imageX*imageY;
int dataZeroSize = data[0].size();
int filterX;
int filterY;
int filterCnt;
if (totalSize != dataZeroSize) { cout << "에러"; }
V2D actMap2D = V2D(data.size(),V1D());
int index = 0;
for (int i = 0; i < data.size(); i++) {
for (int m = 0; m < imageC; m++) {
for (int j = 0; j < filterCnt; j++) {
for (int k = 0; k < (imageY - filterCnt) / stride + 1; k++) {
for (int l = 0; l < (imageX - filterX) / stride + 1; l++) {
float sum = 0.0;
for (int u = 0; u < filterY; u++) {
for (int v = 0; v < filterX; v++) {
// sum += data[i][m][k * stride + u][l * stride + v] * (*filter3D)[j][u][v];
}
}
// t[i * maxY * maxX + j * maxX + k] = 1.0f;
data[i][index++];
actMap2D[i][index++] = sum;
//actMap2D[i * (data[i].size() * (*filter3D).size()) + m * (*filter3D).size() + j].push_back(sum);
//actMap4D[i][m * filter3D->size() + j][k][l] = sum;
}
}
}
}
}
}*/
/*
V2D calculateGPU(V2D data) override {
float* d_input = nullptr;
float* d_filter = nullptr;
float* d_output = nullptr; // input, filter, stride 고려해서 크기 계산
cudaMalloc(&d_input, data[0].size() * sizeof(float));
cudaMalloc(&d_filter, (*this->filter1D).size() * sizeof(float));
for (int i = 0; i < data.size(); i++) {
//cudaMalloc(&d_output, data[i].size() / * sizeof(float));
cudaMemcpy(d_input, data[i].data(), sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_filter, (*this->filter1D).data(), sizeof(float), cudaMemcpyHostToDevice);
int size = 0;
int threadsPerBlock = 128;
int blocksPerGrid = (size + threadsPerBlock - 1) / threadsPerBlock;
//parallelCalculate << < threadsPerBlock, blocksPerGrid >> > ();
}
//std::vector<int> dest(std::begin(src), std::end(src));
data = (*this->activationGPU).calculateGPU(data);
return data;
}*/
V2D* backwardGPU(V2D* delta) override {
return delta;
}
private:
//float**
void im2colGPU(const V4D& image, int kernelRowCol, const int kernelSize, int stride, float** col) {
const int imageSize = image.size();
const int channel = image[0].size();
int height = image[0][0].size();
int width = image[0][0][0].size();
int output_height = (height - kernelRowCol) / stride + 1;
int output_width = (width - kernelRowCol) / stride + 1;
const int _kernelSize = kernelSize;
int col_entry_size = output_height * output_width * kernelRowCol * kernelRowCol;
col = new float* [kernelSize * imageSize * channel];
int cnt = 0;
for (int i = 0; i < kernelSize; i++) {
for (int f = 0; f < imageSize; f++) {
for (int d = 0; d < channel; ++d) {
col[cnt] = new float[col_entry_size];
int col_entry = 0;
for (int h = 0; h < output_height; ++h) {
for (int w = 0; w < output_width; ++w) {
for (int i = h * stride; i < h * stride + kernelRowCol; ++i) {
for (int j = w * stride; j < w * stride + kernelRowCol; ++j) {
col[cnt][col_entry++] += image[f][d][i][j];
}
}
}
}
cnt++;
}
}
}
}
void filter2colGPU(const V3D& filter, int stride, float** filter2D) {
filter2D = new float* [filter.size()];
for (int i = 0; i < filter.size(); i++) {
filter2D[i] = new float[(int)(filter[0].size() * filter[0][0].size())];
int cnt = 0;
for (int j = 0; j < filter[i].size(); j++) {
for (int k = 0; k < filter[i][j].size(); k++) {
filter2D[i][cnt++] = filter[i][j][k];
}
}
}
}
V4D col2im(const V2D& col, int imageSize, int channel, int height, int width, int kernelRowCol, int kernelSize, int stride) {
int outputH = (height - kernelRowCol) / stride + 1;
int outputW = (width - kernelRowCol) / stride + 1;
// 48 9604
// (2 X [3 X 8]) (98 X 98)
V4D image = V4D(imageSize, V3D(channel * kernelSize, V2D(outputH, V1D(outputW, 0.0f))));
for (int i = 0; i < imageSize; i++) { // 이미지 크기는 고정
for (int j = 0; j < kernelSize * channel; j++) { // 커널 크기는 kernelSize * channel 곱셈
for (int k = 0; k < outputH; k++) {
for (int l = 0; l < outputW; l++) {
image[i][j][k][l] = col[i * (kernelSize * channel) + j][k * outputW + l];
}
}
}
}
return image;
}
V2D transpose(const vector<V1D>& data) {
V2D trans = V2D(data[0].size(), V1D(data.size(), 0.0f));
for (int i = 0; i < data.size(); i++) {
for (int j = 0; j < data[i].size(); j++) {
trans[j][i] = data[i][j];
}
}
return trans;
}
/*
__global__ void multiplyKernel(float* a, float* b, float* c, int M, int K, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < M * N) {
int row = tid / N;
int col = tid % N;
float sum = 0.0f;
for (int i = 0; i < K; ++i) {
sum += a[row * K + i] * b[i * N + col];
}
c[row * N + col] = sum;
}
}
std::vector<std::vector<float>> imageXfilterGPU(float** image, float** filter) {
int imageRowSize = sizeof(image) / sizeof(image[0]);
int imageColSize = sizeof(image[0]) / sizeof(image[0][0]);
int filterRowSize = sizeof(filter) / sizeof(filter[0]);
int filterColSize = sizeof(filter[0]) / sizeof(filter[0][0]);
std::vector<std::vector<float>> result(imageRowSize, std::vector<float>(filterColSize, 0.0f));
float* hostImage = *image;
float* hostFilter = *filter;
float* hostResult = new float[imageRowSize * filterColSize];
float* deviceImage = nullptr;
float* deviceFilter = nullptr;
float* deviceResult = nullptr;
int imageSize = imageRowSize * imageColSize * sizeof(float);
int filterSize = filterRowSize * filterColSize * sizeof(float);
int resultSize = imageRowSize * filterColSize * sizeof(float);
cudaMalloc((void**)&deviceImage, imageSize);
cudaMalloc((void**)&deviceFilter, filterSize);
cudaMalloc((void**)&deviceResult, resultSize);
cudaMemcpy(deviceImage, hostImage, imageSize, cudaMemcpyHostToDevice);
cudaMemcpy(deviceFilter, hostFilter, filterSize, cudaMemcpyHostToDevice);
dim3 blockSize(256);
dim3 gridSize((imageRowSize * filterColSize + blockSize.x - 1) / blockSize.x);
multiplyKernel<<<gridSize,blockSize>>>(deviceImage, deviceFilter, deviceResult, imageRowSize, imageColSize, filterColSize);
cudaMemcpy(hostResult, deviceResult, resultSize, cudaMemcpyDeviceToHost);
for (int i = 0; i < imageRowSize; i++) {
for (int j = 0; j < filterColSize; j++) {
result[i][j] = hostResult[i * filterColSize + j];
}
}
// 메모리 해제
delete[] hostResult;
cudaFree(deviceImage);
cudaFree(deviceFilter);
cudaFree(deviceResult);
return result;
}*/
__global__ void multiplyKernel(float* a, float* b, float* c, int M, int K, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < M * N) {
int row = tid / N;
int col = tid % N;
float sum = 0.0f;
for (int i = 0; i < K; ++i) {
sum += a[row * K + i] * b[i * N + col];
}
c[row * N + col] = sum;
}
}
V2D imageXfilterGPU(float** image, float** filter) {
int imageRowSize = sizeof(image) / sizeof(image[0]);
int imageColSize = sizeof(image[0]) / sizeof(image[0][0]);
int filterRowSize = sizeof(filter) / sizeof(filter[0]);
int filterColSize = sizeof(filter[0]) / sizeof(filter[0][0]);
V2D result = V2D(imageRowSize, V1D(filterColSize, 0.0f));
//float* cudaImage = new float[imageRowSize * imageColSize];
//float* cudaFilter = new float[filterRowSize * filterColSize];
float* hostImage = *image;
float* hostFilter = *filter;
float* hostResult = new float[imageRowSize * filterColSize];
float* deviceImage = nullptr;
float* deviceFilter = nullptr;
float* deviceResult = nullptr;
int imageSize = imageRowSize * imageColSize * sizeof(float);
int filterSize = filterRowSize * filterColSize * sizeof(float);
int resultSize = imageRowSize * filterColSize * sizeof(float);
cudaMalloc((void**)&deviceImage, imageSize);
cudaMalloc((void**)&deviceFilter, filterSize);
cudaMalloc((void**)&deviceResult, resultSize);
cudaMemcpy(deviceImage, hostImage, imageSize, cudaMemcpyHostToDevice);
cudaMemcpy(deviceFilter, hostImage, filterSize, cudaMemcpyHostToDevice);
//dim3 blockSize(16, 16);
//dim3 gridSize((filterColSize + blockSize.x - 1) / blockSize.x, (imageRowSize + blockSize.y - 1) / blockSize.y);
dim3 blockSize(256);
dim3 gridSize((imageRowSize * filterColSize + blockSize.x - 1) / blockSize.x);
//multiplyKernel <<<gridSize, blockSize>>> (deviceImage, deviceFilter, deviceResult, imageRowSize, imageColSize, filterColSize);
cudaMemcpy(hostResult, deviceResult, resultSize, cudaMemcpyDeviceToHost);
for (int i = 0; i < imageRowSize; i++) {
V1D result1D;
for (int j = 0; j < filterColSize; j++) {
result1D.push_back(hostResult[i * filterColSize + j]);
}
result.push_back(result1D);
}
return result;
}
};
class PoolingGPU : public LayerGPU {
public:
V2D calculateGPU(V2D& data) override {
V2D dummy;
return dummy;
}
V2D* backwardGPU(V2D* delta) override {
return delta;
}
};
class FlattenGPU : public LayerGPU {
public:
__global__ V2D parallelCalculate(V4D data) {
}
V2D flatten(V4D data) {
}
V2D calculateGPU(V2D& data) override {
V2D dummy;
return dummy;
}
V2D* backwardGPU(V2D* delta) override {
return delta;
}
};
class FullyConnectedGPU : public LayerGPU {
public:
V2D calculateGPU(V2D& data) override {
V2D dummy;
return dummy;
}
V2D* backwardGPU(V2D* delta) override {
return delta;
}
};
#ifdef __cplusplus
}
#endif
#endif // KERNEL_CUH