[2025.01.22] 🌟 GraphEval is accepted for ICLR 2025.
# create a new environment
conda create -n grapheval python=3.10
conda activate grapheval
# install pytorch. Modify the command to align with your own CUDA version.
pip3 install torch --index-url https://download.pytorch.org/whl/cu118
# install related libraries
pip install -r requirements.txt
# install pyg
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+cu118.html
We have three datasets to choose from, namely ICLR_Dataset, AI_Researcher and Review_Advisor.
You can find the dataset files in the Data/[DATASET_NAME]
folder.
Generate viewpoint nodes and edges.
# DATASET Choices: ICLR_Dataset, AI_Researcher and Review_Advisor
python models/Graph_Extraction.py
Run experiments and print/save evaluation results on metrics accuracy, precision, recall, and F1 Score.
# Method Choices: GraphEval_GNN, GraphEval_LP, Baselines
python run_exp.py --method_name [Method]
@inproceedings{fenggrapheval,
title={GraphEval: A Lightweight Graph-Based LLM Framework for Idea Evaluation},
author={Feng, Tao and Sun, Yihang and You, Jiaxuan},
booktitle={The Thirteenth International Conference on Learning Representations}
}