Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Local_modify #21

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,7 @@ venv3/
logs/
results/
.ipynb_checkpoints/

kernels/int_quantization*
kernels/build/
kernels/dist/
29 changes: 25 additions & 4 deletions inference/inference_sim.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,14 @@
import os, sys
dir_path = os.path.dirname(os.path.realpath(__file__))
root_dir = os.path.join(dir_path, os.path.pardir)
sys.path.append(root_dir)

# dir_path = os.path.dirname(os.path.realpath(__file__))
# root_dir = os.path.join(dir_path, os.path.pardir)
# sys.path.append(root_dir)

current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.abspath(os.path.join(current_dir, os.pardir))
sys.path.insert(0, parent_dir)


import argparse
import time
import logging
Expand Down Expand Up @@ -127,8 +134,13 @@
torch.manual_seed(12345)



class InferenceModel:
def __init__(self, ml_logger=None):


self.onnx_save = True

self.ml_logger = ml_logger
global args, best_prec1

Expand Down Expand Up @@ -229,6 +241,7 @@ def __init__(self, ml_logger=None):
num_workers=args.workers, pin_memory=True)

def run(self):

if args.eval_precision:
elog = EvalLog(['dtype', 'val_prec1', 'val_prec5'])
print("\nFloat32 no quantization")
Expand Down Expand Up @@ -274,8 +287,8 @@ def run(self):

return val_loss, val_prec1, val_prec5


def validate(val_loader, model, criterion):
onnx_save = True
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
Expand Down Expand Up @@ -304,6 +317,14 @@ def validate(val_loader, model, criterion):
QM().verbose = True
input = input.to(args.device)
target = target.to(args.device)
if i == 0 and onnx_save == True:
onnx_save = False
quantized_model_path = 'quantized_model.pth'
quantized_model_path_onnx = 'quantized_model.onnx'
torch.onnx.export(model, input, quantized_model_path_onnx)
torch.save(model.state_dict(), quantized_model_path)
print(f"Quantized model saved to {quantized_model_path}")

if args.dump_dir is not None and i == 5:
with DM(args.dump_dir):
DM().set_tag('batch%d'%i)
Expand Down