This project is designed to export geographic data from Overture Maps and upload it to the Humanitarian Data Exchange (HDX). The data is processed using DuckDB and can be exported in various formats such as GeoJSON, GPKG, and ESRI Shapefile.
- Export geographic data from Overture Maps.
- Upload data to HDX.
- Support for multiple output formats.
- Configurable via YAML and environment variables.
- Logging setup using environment variables or parameters.
pip install overture2hdx
The application is configured using a YAML file and environment variables.
Example config.yaml
:
iso3: npl
geom: '{"type": "FeatureCollection", "features": [{"type": "Feature", "properties": {}, "geometry": {"coordinates": [[]], "type": "Polygon"}}]}'
key: osgeonepal_pkr
subnational: true
frequency: yearly
categories:
- Roads:
select:
- id
- names.primary as name
- class as class
- subclass as subclass
- UNNEST(JSON_EXTRACT(road_surface, '$[*].value')) as road_surface
- UNNEST(JSON_EXTRACT(sources, '$[*].dataset')) AS source
hdx:
title: Roads of Pokhara
notes: Overturemaps Export for Pokhara. Data might have errors but has gone through validation checks.
tags:
- geodata
- transportation
- roads
theme:
- transportation
feature_type:
- segment
formats:
- gpkg
- shp
Config
: Class to handle configuration.
OvertureMapExporter
: Class to handle the export process.
setup_logging
: Function to set up logging.
Following is the default yaml used
Category | Description | License | Overture Theme Docs | Attributes | File Formats |
---|---|---|---|---|---|
Hospitals | Health POIs such as hospitals and clinics, sourced from Meta and Microsoft open data | CDLA Permissive 2.0 | Places | id , name , name_en , category , address , phone , email , website , confidence , source |
gpkg , shp |
Schools | Educational POIs including schools, colleges, and universities from Meta and Microsoft | CDLA Permissive 2.0 | Places | id , name , name_en , category , address , phone , website , confidence , source |
gpkg , shp |
Rivers | Rivers, lakes, and other water features from OpenStreetMap via the Base theme | ODbL 1.0 | Base | id , name , name_en , subtype , class , is_salt , wikidata , source |
gpkg , shp |
Land Use | Land use areas like farmland and forests from OpenStreetMap landuse tags | ODbL 1.0 | Base | id , name , name_en , subtype , class , surface , wikidata , source |
gpkg , shp |
Transportation Hubs | POIs like airports, train stations, and terminals from Meta and Microsoft open data | CDLA Permissive 2.0 | Places | id , name , name_en , category , address , phone , website , confidence , source |
gpkg , shp |
Settlements | Cities, towns, villages, and hamlets from OSM, geoBoundaries, and Esri | ODbL 1.0 | Divisions | id , name , name_en , population , region , wikidata , source |
gpkg , shp |
Roads | Roads including highways and local roads from OpenStreetMap and TomTom | ODbL 1.0 | Transportation | id , name , name_en , class , subclass , subtype , road_surface , source |
gpkg , shp |
Buildings | Building footprints from OSM, Microsoft, Google, and Esri | ODbL 1.0 | Buildings | id , name , name_en , class , subtype , height , level , num_floors , num_floors_underground , is_underground , has_parts , roof_material , roof_shape , roof_color , source |
gpkg , shp |
import json
geom = json.dumps(
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {},
"geometry": {
"coordinates": [
[
[83.98047393581618, 28.255338988044088],
[83.973540694181, 28.230486421513703],
[83.91927014759125, 28.214265947308945],
[83.97832224013575, 28.195093119231174],
[83.96971545741735, 28.158212628626416],
[84.00175181531534, 28.19361814379657],
[84.03187555483152, 28.168540447741847],
[84.01059767533235, 28.208788347541898],
[84.0342663278089, 28.255549578267903],
[83.99960011963498, 28.228801292171724],
[83.98047393581618, 28.255338988044088],
]
],
"type": "Polygon",
},
}
],
}
)
iso3 = "NPL"
dataset_name = "Pokhara, Nepal"
key = "osegonepal_pkr"
subnational = True
frequency = "yearly"
from overture2hdx import DEFAULT_CONFIG_YAML
config_yaml = DEFAULT_CONFIG_YAML.format(
iso3=iso3,
geom=geom,
key=key,
subnational=subnational,
frequency=frequency,
dataset_name=dataset_name,
)
from overture2hdx import Config, Exporter
config = Config(config_yaml=config_yaml)
exporter = Exporter(config)
results = exporter.export()
print(results)

Kshitij Raj Sharma , License : GNU GENERAL PUBLIC LICENSE V3