Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change -1 to N/A #885

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 25 additions & 22 deletions llm_bench/python/llm_bench_utils/metrics_print.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,6 @@ def print_metrics(
iter_num, iter_data, tms=None, tms_infer=None, warm_up=False, max_rss_mem=-1, max_shared_mem=-1,
max_uss_mem=-1, stable_diffusion=None, tokenization_time=None, batch_size=1
):
if tms is None:
tms = []
if tms_infer is None:
tms_infer = []
iter_str = str(iter_num)
if warm_up:
iter_str = 'warm-up'
Expand All @@ -36,25 +32,27 @@ def print_metrics(
if output_str != '':
output_str = ' '.join(['[{}]'.format(iter_str), output_str])
log.info(output_str)
if len(tms) > 0:
if tms is not None:
iter_data['first_token_latency'] = tms[0] * 1000 if len(tms) > 0 else -1
iter_data['other_tokens_avg_latency'] = sum(tms[1:]) / (len(tms) - 1) * 1000 if len(tms) > 1 else -1
first_token_latency = 'NA' if iter_data['first_token_latency'] == -1 else f"{iter_data['first_token_latency']:.2f} ms/{latency_unit}"
other_token_latency = 'NA' if iter_data['other_tokens_avg_latency'] == -1 else f"{iter_data['other_tokens_avg_latency']:.2f} ms/{latency_unit}"
log.info(
f"[{iter_str}] First token latency: {iter_data['first_token_latency']:.2f} ms/{latency_unit}, "
f"other tokens latency: {iter_data['other_tokens_avg_latency']:.2f} ms/{latency_unit}, len of tokens: {len(tms)} * {batch_size}",
f"[{iter_str}] First token latency: {first_token_latency}, "
f"other tokens latency: {other_token_latency}, len of tokens: {len(tms)} * {batch_size}",
)
else:
if tokenization_time:
if len(tms) == 0:
log.warning(f'[{iter_str}] No hook data output for first token latency and other tokens latency')
if len(tms_infer) > 0:
if tms_infer is not None:
iter_data['first_token_infer_latency'] = tms_infer[0] * 1000 if len(tms_infer) > 0 else -1
iter_data['other_tokens_infer_avg_latency'] = sum(tms_infer[1:]) / (len(tms_infer) - 1) * 1000 if len(tms_infer) > 1 else -1
first_infer_latency = 'NA' if iter_data['first_token_infer_latency'] == -1 else f"{iter_data['first_token_infer_latency']:.2f} ms/infer"
other_infer_latency = 'NA' if iter_data['other_tokens_infer_avg_latency'] == -1 else f"{iter_data['other_tokens_infer_avg_latency']:.2f} ms/infer"
log.info(
f"[{iter_str}] First infer latency: {iter_data['first_token_infer_latency']:.2f} ms/infer, "
f"other infers latency: {iter_data['other_tokens_infer_avg_latency']:.2f} ms/infer, inference count: {len(tms_infer)}",
f"[{iter_str}] First infer latency: {first_infer_latency}, "
f"other infers latency: {other_infer_latency}, inference count: {len(tms_infer)}",
)
else:
if tokenization_time:
if len(tms_infer) == 0:
log.warning(f'[{iter_str}] No hook data output for first infer latency and other infers latency')
if stable_diffusion is not None:
print_stable_diffusion_infer_latency(iter_str, iter_data, stable_diffusion)
Expand Down Expand Up @@ -112,8 +110,10 @@ def print_ldm_unet_vqvae_infer_latency(iter_num, iter_data, tms=None, warm_up=Fa
iter_data['first_token_infer_latency'] = iter_data['first_token_latency']
iter_data['other_tokens_infer_avg_latency'] = iter_data['other_tokens_avg_latency']

log.info(f"[{iter_str}] First step of unet latency: {iter_data['first_token_latency']:.2f} ms/step, "
f"other steps of unet latency: {iter_data['other_tokens_avg_latency']:.2f} ms/step",)
first_token_latency = 'NA' if iter_data['first_token_latency'] == -1 else f"{iter_data['first_token_latency']:.2f} ms/step"
other_token_latency = 'NA' if iter_data['other_tokens_avg_latency'] == -1 else f"{iter_data['other_tokens_avg_latency']:.2f} ms/step"
log.info(f"[{iter_str}] First step of unet latency: {first_token_latency}, "
f"other steps of unet latency: {other_token_latency}",)
if len_tms > 1:
log.info(f"[{iter_str}] Unet latency: {(sum(tms[0:(len_tms - 1)]) / (len_tms - 1)) * 1000:.2f} ms/step, "
f"vqvae decoder latency: {tms[len_tms - 1] * 1000:.2f} ms/step, "
Expand Down Expand Up @@ -149,14 +149,17 @@ def output_avg_statis_tokens(prompt_dict, prompt_idx_list, iter_data_list, batch
latency_unit = '{}tokens'.format(batch_size)
else:
latency_unit = '{}steps'.format(batch_size)
avg_1st_token_latency = 'NA' if avg_1st_token_latency < 0 else f'{avg_1st_token_latency:.2f} ms/{latency_unit}'
avg_2nd_tokens_latency = 'NA' if avg_2nd_tokens_latency < 0 else f'{avg_2nd_tokens_latency:.2f} ms/{latency_unit}'
avg_2nd_token_tput = 'NA' if avg_2nd_tokens_latency == 'NA' else f'{avg_2nd_token_tput:.2f} {latency_unit}s/s'
if is_text_gen is True:
prompt_dict[p_idx] = '\n[ INFO ] [Average] Prompt[{}] Input token size: {}, 1st token lantency: {:.2f} ms/{}, ' \
'2nd tokens latency: {:.2f} ms/{}, 2nd tokens throughput: {:.2f} tokens/s' \
.format(p_idx, avg_input_size, avg_1st_token_latency, latency_unit, avg_2nd_tokens_latency, latency_unit, avg_2nd_token_tput)
prompt_dict[p_idx] = '\n[ INFO ] [Average] Prompt[{}] Input token size: {}, 1st token lantency: {}, ' \
'2nd token lantency: {}, 2nd tokens throughput: {}' \
.format(p_idx, avg_input_size, avg_1st_token_latency, avg_2nd_tokens_latency, avg_2nd_token_tput)
else:
prompt_dict[p_idx] = '\n[ INFO ] [Average] Prompt[{}] 1st step of unet latency {:.2f} ms/{}, ' \
'2nd steps of unet latency: {:.2f} ms/{}, 2nd steps throughput: {:.2f} steps/s' \
.format(p_idx, avg_1st_token_latency, latency_unit, avg_2nd_tokens_latency, latency_unit, avg_2nd_token_tput)
prompt_dict[p_idx] = '\n[ INFO ] [Average] Prompt[{}] 1st step of unet latency: {}, ' \
'2nd steps of unet latency: {}, 2nd steps throughput: {}' \
.format(p_idx, avg_1st_token_latency, avg_2nd_tokens_latency, avg_2nd_token_tput)


def print_average(iter_data_list, prompt_idx_list, batch_size, is_text_gen=False):
Expand Down
20 changes: 16 additions & 4 deletions llm_bench/python/llm_bench_utils/output_csv.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,10 +106,22 @@ def gen_data_to_csv(result, iter_data, pretrain_time):
result['output_size'] = iter_data['output_size']
result['latency(ms)'] = round(latency, 5) if latency != '' else latency
result['result_md5'] = iter_data['result_md5']
result['1st_latency(ms)'] = round(first_latency, 5) if first_latency != '' else first_latency
result['2nd_avg_latency(ms)'] = round(other_latency, 5) if other_latency != '' else other_latency
result['1st_infer_latency(ms)'] = round(first_token_infer_latency, 5) if first_token_infer_latency != '' else first_token_infer_latency
result['2nd_infer_avg_latency(ms)'] = round(other_token_infer_latency, 5) if other_token_infer_latency != '' else other_token_infer_latency
if first_latency < 0:
result['1st_latency(ms)'] = 'NA'
else:
result['1st_latency(ms)'] = round(first_latency, 5) if first_latency != '' else first_latency
if other_latency < 0:
result['2nd_avg_latency(ms)'] = 'NA'
else:
result['2nd_avg_latency(ms)'] = round(other_latency, 5) if other_latency != '' else other_latency
if first_token_infer_latency < 0:
result['1st_infer_latency(ms)'] = 'NA'
else:
result['1st_infer_latency(ms)'] = round(first_token_infer_latency, 5) if first_token_infer_latency != '' else first_token_infer_latency
if other_token_infer_latency < 0:
result['2nd_infer_avg_latency(ms)'] = 'NA'
else:
result['2nd_infer_avg_latency(ms)'] = round(other_token_infer_latency, 5) if other_token_infer_latency != '' else other_token_infer_latency
result['max_rss_mem(MB)'] = round(rss_mem, 5) if rss_mem != '' else rss_mem
result['max_uss_mem(MB)'] = round(uss_mem, 5) if uss_mem != '' else uss_mem
result['max_shared_mem(MB)'] = round(shared_mem, 5) if shared_mem != '' else shared_mem
Expand Down
Loading