Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added possibility to generate base text on GPU for text evaluation. #1945

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 13 additions & 18 deletions tools/who_what_benchmark/whowhatbench/text_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,29 +189,24 @@ def worst_examples(self, top_k: int = 5, metric="similarity"):
def _generate_data(self, model, gen_answer_fn=None, generation_config=None):
def default_gen_answer(model, tokenizer, prompt, max_new_tokens, crop_question, use_chat_template=False):
is_awq = getattr(model, "is_awq", None) is not None
device = "cpu"
if hasattr(model, "device"):
device = model.device

if use_chat_template:
message = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors="pt")
if is_awq:
with patch_awq_for_inference(is_awq):
tokens = model.generate(inputs, do_sample=False, max_new_tokens=max_new_tokens)
else:
tokens = model.generate(inputs, do_sample=False, max_new_tokens=max_new_tokens)
if crop_question:
tokens = tokens[:, inputs.shape[-1]:]
res = self.tokenizer.decode(tokens[0], skip_special_tokens=True)
return res
inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(device)
else:
inputs = self.tokenizer(prompt, return_tensors="pt")
if is_awq:
with patch_awq_for_inference(is_awq):
tokens = model.generate(**inputs, do_sample=False, max_new_tokens=max_new_tokens)
else:
inputs = self.tokenizer(prompt, return_tensors="pt").to(device)

if is_awq:
with patch_awq_for_inference(is_awq):
tokens = model.generate(**inputs, do_sample=False, max_new_tokens=max_new_tokens)
if crop_question:
tokens = tokens[:, inputs["input_ids"].shape[-1] :]
return self.tokenizer.batch_decode(tokens, skip_special_tokens=True)[0]
else:
tokens = model.generate(**inputs, do_sample=False, max_new_tokens=max_new_tokens)
if crop_question:
tokens = tokens[:, inputs["input_ids"].shape[-1] :]
return self.tokenizer.batch_decode(tokens, skip_special_tokens=True)[0]

gen_answer_fn = gen_answer_fn or default_gen_answer

Expand Down
Loading