Skip to content

Commit

Permalink
Merge pull request #144 from openjournals/jose.00239
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jun 23, 2024
2 parents d424bf4 + 647e979 commit b6ba0e5
Show file tree
Hide file tree
Showing 3 changed files with 817 additions and 0 deletions.
202 changes: 202 additions & 0 deletions jose.00239/10.21105.jose.00239.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240623225843-f85459cebe5cbb4d919e8e410196a9bddae149d5</doi_batch_id>
<timestamp>20240623225843</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Education</full_title>
<abbrev_title>JOSE</abbrev_title>
<issn media_type="electronic">2577-3569</issn>
<doi_data>
<doi>10.21105/jose</doi>
<resource>https://jose.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>06</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>76</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Practical machine learning with PyTorch</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jack</given_name>
<surname>Atkinson</surname>
<ORCID>https://orcid.org/0000-0001-5001-4812</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jim</given_name>
<surname>Denholm</surname>
<ORCID>https://orcid.org/0000-0002-2389-3134</ORCID>
</person_name>
</contributors>
<publication_date>
<month>06</month>
<day>23</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>239</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/jose.00239</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11401113</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/jose-reviews/issues/239</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/jose.00239</doi>
<resource>https://jose.theoj.org/papers/10.21105/jose.00239</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://jose.theoj.org/papers/10.21105/jose.00239.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="paszke2019pytorch">
<article_title>Pytorch: An imperative style,
high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>32</volume>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., &amp; others. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information
Processing Systems, 32.</unstructured_citation>
</citation>
<citation key="barba2022teaching">
<article_title>Teaching and Learning with
Jupyter</article_title>
<author>Barba</author>
<doi>10.6084/m9.figshare.19608801.v1</doi>
<cYear>2022</cYear>
<unstructured_citation>Barba, L. A., Barker, L. J., Blank,
D. S., Brown, J., Downey, A., George, T., Heagy, L. J., Mandli, K.,
Moore, J. K., Lippert, D., Niemeyer, K., Watkins, R., West, R., Wickes,
E., Willling, C., &amp; Zingale, M. (2022). Teaching and Learning with
Jupyter.
https://doi.org/10.6084/m9.figshare.19608801.v1</unstructured_citation>
</citation>
<citation key="carleo2019machine">
<article_title>Machine learning and the physical
sciences</article_title>
<author>Carleo</author>
<journal_title>Reviews of Modern Physics</journal_title>
<issue>4</issue>
<volume>91</volume>
<doi>10.1103/RevModPhys.91.045002</doi>
<cYear>2019</cYear>
<unstructured_citation>Carleo, G., Cirac, I., Cranmer, K.,
Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &amp; Zdeborová,
L. (2019). Machine learning and the physical sciences. Reviews of Modern
Physics, 91(4).
https://doi.org/10.1103/RevModPhys.91.045002</unstructured_citation>
</citation>
<citation key="palmerpenguins">
<article_title>palmerpenguins: Palmer Archipelago
(Antarctica) penguin data</article_title>
<author>Horst</author>
<doi>10.5281/zenodo.3960218</doi>
<cYear>2020</cYear>
<unstructured_citation>Horst, A. M., Hill, A. P., &amp;
Gorman, K. B. (2020). palmerpenguins: Palmer Archipelago (Antarctica)
penguin data.
https://doi.org/10.5281/zenodo.3960218</unstructured_citation>
</citation>
<citation key="kashinath2021physics">
<article_title>Physics-informed machine learning: Case
studies for weather and climate modelling</article_title>
<author>Kashinath</author>
<journal_title>Philosophical Transactions of the Royal
Society A</journal_title>
<volume>379</volume>
<doi>10.1098/rsta.2020.0093</doi>
<cYear>2021</cYear>
<unstructured_citation>Kashinath, K., Mustafa, M., Albert,
A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R.,
Chattopadhyay, A., Singh, A., &amp; others. (2021). Physics-informed
machine learning: Case studies for weather and climate modelling.
Philosophical Transactions of the Royal Society A, 379, 20200093.
https://doi.org/10.1098/rsta.2020.0093</unstructured_citation>
</citation>
<citation key="gefen2021ai">
<article_title>AI for digital humanities and computational
social sciences</article_title>
<author>Gefen</author>
<journal_title>Reflections on Artificial Intelligence for
Humanity</journal_title>
<doi>10.1007/978-3-030-69128-8_12</doi>
<cYear>2021</cYear>
<unstructured_citation>Gefen, A., Saint-Raymond, L., &amp;
Venturini, T. (2021). AI for digital humanities and computational social
sciences. Reflections on Artificial Intelligence for Humanity, 191–202.
https://doi.org/10.1007/978-3-030-69128-8_12</unstructured_citation>
</citation>
<citation key="lecun1998mnist">
<article_title>The MNIST database of handwritten
digits</article_title>
<author>LeCun</author>
<cYear>1998</cYear>
<unstructured_citation>LeCun, Y. (1998). The MNIST database
of handwritten digits.
http://yann.lecun.com/exdb/mnist/</unstructured_citation>
</citation>
<citation key="Allaire_Quarto_2022">
<article_title>Quarto</article_title>
<author>Allaire</author>
<doi>10.5281/zenodo.5960048</doi>
<cYear>2022</cYear>
<unstructured_citation>Allaire, J. J., Teague, C.,
Scheidegger, C., Xie, Y., &amp; Dervieux, C. (2022). Quarto (Version
1.2). https://doi.org/10.5281/zenodo.5960048</unstructured_citation>
</citation>
<citation key="torchtools">
<article_title>TorchTools</article_title>
<author>Denholm</author>
<cYear>2023</cYear>
<unstructured_citation>Denholm, J. (2023). TorchTools.
https://github.com/jdenholm/TorchTools</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added jose.00239/10.21105.jose.00239.pdf
Binary file not shown.
Loading

0 comments on commit b6ba0e5

Please sign in to comment.