|
| 1 | +""" |
| 2 | +MIT License |
| 3 | +
|
| 4 | +Copyright (c) 2020-present TorchQuantum Authors |
| 5 | +
|
| 6 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | +of this software and associated documentation files (the "Software"), to deal |
| 8 | +in the Software without restriction, including without limitation the rights |
| 9 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | +copies of the Software, and to permit persons to whom the Software is |
| 11 | +furnished to do so, subject to the following conditions: |
| 12 | +
|
| 13 | +The above copyright notice and this permission notice shall be included in all |
| 14 | +copies or substantial portions of the Software. |
| 15 | +
|
| 16 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | +SOFTWARE. |
| 23 | +""" |
| 24 | + |
| 25 | +import torch |
| 26 | +import torchquantum as tq |
| 27 | + |
| 28 | +import random |
| 29 | +import numpy as np |
| 30 | + |
| 31 | +from torchquantum.functional import mat_dict |
| 32 | + |
| 33 | +from torchquantum.measurement import expval_joint_analytical_density |
| 34 | + |
| 35 | +seed = 0 |
| 36 | +random.seed(seed) |
| 37 | +np.random.seed(seed) |
| 38 | +torch.manual_seed(seed) |
| 39 | + |
| 40 | + |
| 41 | +class MAXCUT(tq.QuantumModule): |
| 42 | + """computes the optimal cut for a given graph. |
| 43 | + outputs: the most probable bitstring decides the set {0 or 1} each |
| 44 | + node belongs to. |
| 45 | + """ |
| 46 | + |
| 47 | + def __init__(self, n_wires, input_graph, n_layers): |
| 48 | + super().__init__() |
| 49 | + |
| 50 | + self.n_wires = n_wires |
| 51 | + |
| 52 | + self.input_graph = input_graph # list of edges |
| 53 | + self.n_layers = n_layers |
| 54 | + |
| 55 | + self.betas = torch.nn.Parameter(0.01 * torch.rand(self.n_layers)) |
| 56 | + self.gammas = torch.nn.Parameter(0.01 * torch.rand(self.n_layers)) |
| 57 | + |
| 58 | + def mixer(self, qdev, beta): |
| 59 | + """ |
| 60 | + Apply the single rotation and entangling layer of the QAOA ansatz. |
| 61 | + mixer = exp(-i * beta * sigma_x) |
| 62 | + """ |
| 63 | + for wire in range(self.n_wires): |
| 64 | + qdev.rx( |
| 65 | + wires=wire, |
| 66 | + params=beta.unsqueeze(0), |
| 67 | + ) # type: ignore |
| 68 | + |
| 69 | + def entangler(self, qdev, gamma): |
| 70 | + """ |
| 71 | + Apply the single rotation and entangling layer of the QAOA ansatz. |
| 72 | + entangler = exp(-i * gamma * (1 - sigma_z * sigma_z)/2) |
| 73 | + """ |
| 74 | + for edge in self.input_graph: |
| 75 | + qdev.cx( |
| 76 | + [edge[0], edge[1]], |
| 77 | + ) # type: ignore |
| 78 | + qdev.rz( |
| 79 | + wires=edge[1], |
| 80 | + params=gamma.unsqueeze(0), |
| 81 | + ) # type: ignore |
| 82 | + qdev.cx( |
| 83 | + [edge[0], edge[1]], |
| 84 | + ) # type: ignore |
| 85 | + |
| 86 | + def edge_to_PauliString(self, edge): |
| 87 | + # construct pauli string |
| 88 | + pauli_string = "" |
| 89 | + for wire in range(self.n_wires): |
| 90 | + if wire in edge: |
| 91 | + pauli_string += "Z" |
| 92 | + else: |
| 93 | + pauli_string += "I" |
| 94 | + return pauli_string |
| 95 | + |
| 96 | + def circuit(self, qdev): |
| 97 | + """ |
| 98 | + execute the quantum circuit |
| 99 | + """ |
| 100 | + # print(self.betas, self.gammas) |
| 101 | + for wire in range(self.n_wires): |
| 102 | + qdev.h( |
| 103 | + wires=wire, |
| 104 | + ) # type: ignore |
| 105 | + |
| 106 | + for i in range(self.n_layers): |
| 107 | + self.mixer(qdev, self.betas[i]) |
| 108 | + self.entangler(qdev, self.gammas[i]) |
| 109 | + |
| 110 | + def forward(self, measure_all=False): |
| 111 | + """ |
| 112 | + Apply the QAOA ansatz and only measure the edge qubit on z-basis. |
| 113 | + Args: |
| 114 | + if edge is None |
| 115 | + """ |
| 116 | + qdev = tq.NoiseDevice( |
| 117 | + n_wires=self.n_wires, device=self.betas.device, record_op=False, |
| 118 | + noise_model=tq.NoiseModel(kraus_dict={"Bitflip": 0.12, "Phaseflip": 0.12}) |
| 119 | + ) |
| 120 | + |
| 121 | + self.circuit(qdev) |
| 122 | + |
| 123 | + # turn on the record_op above to print the circuit |
| 124 | + # print(op_history2qiskit(self.n_wires, qdev.op_history)) |
| 125 | + |
| 126 | + # print(tq.measure(qdev, n_shots=1024)) |
| 127 | + # compute the expectation value |
| 128 | + # print(qdev.get_states_1d()) |
| 129 | + if measure_all is False: |
| 130 | + expVal = 0 |
| 131 | + for edge in self.input_graph: |
| 132 | + pauli_string = self.edge_to_PauliString(edge) |
| 133 | + expv = expval_joint_analytical_density(qdev, observable=pauli_string) |
| 134 | + expVal += 0.5 * expv |
| 135 | + # print(pauli_string, expv) |
| 136 | + # print(expVal) |
| 137 | + return expVal |
| 138 | + else: |
| 139 | + return tq.measure_density(qdev, n_shots=1024, draw_id=0) |
| 140 | + |
| 141 | + |
| 142 | +def backprop_optimize(model, n_steps=100, lr=0.1): |
| 143 | + """ |
| 144 | + Optimize the QAOA ansatz over the parameters gamma and beta |
| 145 | + Args: |
| 146 | + betas (np.array): A list of beta parameters. |
| 147 | + gammas (np.array): A list of gamma parameters. |
| 148 | + n_steps (int): The number of steps to optimize, defaults to 10. |
| 149 | + lr (float): The learning rate, defaults to 0.1. |
| 150 | + """ |
| 151 | + # measure all edges in the input_graph |
| 152 | + optimizer = torch.optim.Adam(model.parameters(), lr=lr) |
| 153 | + print( |
| 154 | + "The initial parameters are betas = {} and gammas = {}".format( |
| 155 | + *model.parameters() |
| 156 | + ) |
| 157 | + ) |
| 158 | + # optimize the parameters and return the optimal values |
| 159 | + for step in range(n_steps): |
| 160 | + optimizer.zero_grad() |
| 161 | + loss = model() |
| 162 | + loss.backward() |
| 163 | + optimizer.step() |
| 164 | + if step % 2 == 0: |
| 165 | + print("Step: {}, Cost Objective: {}".format(step, loss.item())) |
| 166 | + |
| 167 | + print( |
| 168 | + "The optimal parameters are betas = {} and gammas = {}".format( |
| 169 | + *model.parameters() |
| 170 | + ) |
| 171 | + ) |
| 172 | + return model(measure_all=True) |
| 173 | + |
| 174 | + |
| 175 | +def main(): |
| 176 | + # create a input_graph |
| 177 | + input_graph = [(0, 1), (0, 3), (1, 2), (2, 3)] |
| 178 | + n_wires = 4 |
| 179 | + n_layers = 3 |
| 180 | + model = MAXCUT(n_wires=n_wires, input_graph=input_graph, n_layers=n_layers) |
| 181 | + # model.to("cuda") |
| 182 | + # model.to(torch.device("cuda")) |
| 183 | + # circ = tq2qiskit(tq.QuantumDevice(n_wires=4), model) |
| 184 | + # print(circ) |
| 185 | + # print("The circuit is", circ.draw(output="mpl")) |
| 186 | + # circ.draw(output="mpl") |
| 187 | + # use backprop |
| 188 | + backprop_optimize(model, n_steps=300, lr=0.01) |
| 189 | + # use parameter shift rule |
| 190 | + # param_shift_optimize(model, n_steps=500, step_size=100000) |
| 191 | + |
| 192 | + |
| 193 | +""" |
| 194 | +Notes: |
| 195 | +1. input_graph = [(0, 1), (3, 0), (1, 2), (2, 3)], mixer 1st & entangler 2nd, n_layers >= 2, answer is correct. |
| 196 | +
|
| 197 | +""" |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + # import pdb |
| 201 | + # pdb.set_trace() |
| 202 | + |
| 203 | + main() |
0 commit comments