|
| 1 | +""" |
| 2 | +MIT License |
| 3 | +
|
| 4 | +Copyright (c) 2020-present TorchQuantum Authors |
| 5 | +
|
| 6 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | +of this software and associated documentation files (the "Software"), to deal |
| 8 | +in the Software without restriction, including without limitation the rights |
| 9 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | +copies of the Software, and to permit persons to whom the Software is |
| 11 | +furnished to do so, subject to the following conditions: |
| 12 | +
|
| 13 | +The above copyright notice and this permission notice shall be included in all |
| 14 | +copies or substantial portions of the Software. |
| 15 | +
|
| 16 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | +SOFTWARE. |
| 23 | +""" |
| 24 | + |
| 25 | +import torch |
| 26 | +import torch.nn.functional as F |
| 27 | +import torch.optim as optim |
| 28 | +import argparse |
| 29 | + |
| 30 | +import torchquantum as tq |
| 31 | +import torchquantum.functional as tqf |
| 32 | + |
| 33 | +from torchquantum.dataset import MNIST |
| 34 | +from torch.optim.lr_scheduler import CosineAnnealingLR |
| 35 | + |
| 36 | +import random |
| 37 | +import numpy as np |
| 38 | + |
| 39 | + |
| 40 | +class QFCModel(tq.QuantumModule): |
| 41 | + class QLayer(tq.QuantumModule): |
| 42 | + def __init__(self): |
| 43 | + super().__init__() |
| 44 | + self.n_wires = 4 |
| 45 | + self.random_layer = tq.RandomLayer( |
| 46 | + n_ops=50, wires=list(range(self.n_wires)) |
| 47 | + ) |
| 48 | + |
| 49 | + # gates with trainable parameters |
| 50 | + self.rx0 = tq.RX(has_params=True, trainable=True) |
| 51 | + self.ry0 = tq.RY(has_params=True, trainable=True) |
| 52 | + self.rz0 = tq.RZ(has_params=True, trainable=True) |
| 53 | + self.crx0 = tq.CRX(has_params=True, trainable=True) |
| 54 | + |
| 55 | + @tq.static_support |
| 56 | + def forward(self, q_device: tq.NoiseDevice): |
| 57 | + """ |
| 58 | + 1. To convert tq QuantumModule to qiskit or run in the static |
| 59 | + model, need to: |
| 60 | + (1) add @tq.static_support before the forward |
| 61 | + (2) make sure to add |
| 62 | + static=self.static_mode and |
| 63 | + parent_graph=self.graph |
| 64 | + to all the tqf functions, such as tqf.hadamard below |
| 65 | + """ |
| 66 | + self.q_device = q_device |
| 67 | + |
| 68 | + self.random_layer(self.q_device) |
| 69 | + |
| 70 | + # some trainable gates (instantiated ahead of time) |
| 71 | + self.rx0(self.q_device, wires=0) |
| 72 | + self.ry0(self.q_device, wires=1) |
| 73 | + self.rz0(self.q_device, wires=3) |
| 74 | + self.crx0(self.q_device, wires=[0, 2]) |
| 75 | + |
| 76 | + # add some more non-parameterized gates (add on-the-fly) |
| 77 | + tqf.hadamard( |
| 78 | + self.q_device, wires=3, static=self.static_mode, parent_graph=self.graph |
| 79 | + ) |
| 80 | + tqf.sx( |
| 81 | + self.q_device, wires=2, static=self.static_mode, parent_graph=self.graph |
| 82 | + ) |
| 83 | + tqf.cnot( |
| 84 | + self.q_device, |
| 85 | + wires=[3, 0], |
| 86 | + static=self.static_mode, |
| 87 | + parent_graph=self.graph, |
| 88 | + ) |
| 89 | + |
| 90 | + def __init__(self): |
| 91 | + super().__init__() |
| 92 | + self.n_wires = 4 |
| 93 | + self.q_device = tq.NoiseDevice(n_wires=self.n_wires, |
| 94 | + noise_model=tq.NoiseModel(kraus_dict={"Bitflip": 0.08, "Phaseflip": 0.08}) |
| 95 | + ) |
| 96 | + self.encoder = tq.AmplitudeEncoder() |
| 97 | + |
| 98 | + self.q_layer = self.QLayer() |
| 99 | + self.measure = tq.MeasureAll_density(tq.PauliZ) |
| 100 | + |
| 101 | + def forward(self, x, use_qiskit=False): |
| 102 | + bsz = x.shape[0] |
| 103 | + x = F.avg_pool2d(x, 6).view(bsz, 16) |
| 104 | + self.encoder(self.q_device, x) |
| 105 | + self.q_layer(self.q_device) |
| 106 | + x = self.measure(self.q_device) |
| 107 | + x = x.reshape(bsz, 2, 2).sum(-1).squeeze() |
| 108 | + x = F.log_softmax(x, dim=1) |
| 109 | + return x |
| 110 | + |
| 111 | + |
| 112 | +def train(dataflow, model, device, optimizer): |
| 113 | + for feed_dict in dataflow["train"]: |
| 114 | + inputs = feed_dict["image"].to(device) |
| 115 | + targets = feed_dict["digit"].to(device) |
| 116 | + |
| 117 | + outputs = model(inputs) |
| 118 | + loss = F.nll_loss(outputs, targets) |
| 119 | + optimizer.zero_grad() |
| 120 | + loss.backward() |
| 121 | + optimizer.step() |
| 122 | + print(f"loss: {loss.item()}", end="\r") |
| 123 | + |
| 124 | + |
| 125 | +def valid_test(dataflow, split, model, device, qiskit=False): |
| 126 | + target_all = [] |
| 127 | + output_all = [] |
| 128 | + with torch.no_grad(): |
| 129 | + for feed_dict in dataflow[split]: |
| 130 | + inputs = feed_dict["image"].to(device) |
| 131 | + targets = feed_dict["digit"].to(device) |
| 132 | + |
| 133 | + outputs = model(inputs, use_qiskit=qiskit) |
| 134 | + |
| 135 | + target_all.append(targets) |
| 136 | + output_all.append(outputs) |
| 137 | + target_all = torch.cat(target_all, dim=0) |
| 138 | + output_all = torch.cat(output_all, dim=0) |
| 139 | + |
| 140 | + _, indices = output_all.topk(1, dim=1) |
| 141 | + masks = indices.eq(target_all.view(-1, 1).expand_as(indices)) |
| 142 | + size = target_all.shape[0] |
| 143 | + corrects = masks.sum().item() |
| 144 | + accuracy = corrects / size |
| 145 | + loss = F.nll_loss(output_all, target_all).item() |
| 146 | + |
| 147 | + print(f"{split} set accuracy: {accuracy}") |
| 148 | + print(f"{split} set loss: {loss}") |
| 149 | + |
| 150 | + |
| 151 | +def main(): |
| 152 | + parser = argparse.ArgumentParser() |
| 153 | + parser.add_argument( |
| 154 | + "--static", action="store_true", help="compute with " "static mode" |
| 155 | + ) |
| 156 | + parser.add_argument("--pdb", action="store_true", help="debug with pdb") |
| 157 | + parser.add_argument( |
| 158 | + "--wires-per-block", type=int, default=2, help="wires per block int static mode" |
| 159 | + ) |
| 160 | + parser.add_argument( |
| 161 | + "--epochs", type=int, default=5, help="number of training epochs" |
| 162 | + ) |
| 163 | + |
| 164 | + args = parser.parse_args() |
| 165 | + |
| 166 | + if args.pdb: |
| 167 | + import pdb |
| 168 | + |
| 169 | + pdb.set_trace() |
| 170 | + |
| 171 | + seed = 0 |
| 172 | + random.seed(seed) |
| 173 | + np.random.seed(seed) |
| 174 | + torch.manual_seed(seed) |
| 175 | + |
| 176 | + dataset = MNIST( |
| 177 | + root="./mnist_data", |
| 178 | + train_valid_split_ratio=[0.9, 0.1], |
| 179 | + digits_of_interest=[3, 6], |
| 180 | + n_test_samples=75, |
| 181 | + ) |
| 182 | + dataflow = dict() |
| 183 | + |
| 184 | + for split in dataset: |
| 185 | + sampler = torch.utils.data.RandomSampler(dataset[split]) |
| 186 | + dataflow[split] = torch.utils.data.DataLoader( |
| 187 | + dataset[split], |
| 188 | + batch_size=256, |
| 189 | + sampler=sampler, |
| 190 | + num_workers=8, |
| 191 | + pin_memory=True, |
| 192 | + ) |
| 193 | + |
| 194 | + use_cuda = torch.cuda.is_available() |
| 195 | + device = torch.device("cuda" if use_cuda else "cpu") |
| 196 | + |
| 197 | + model = QFCModel().to(device) |
| 198 | + |
| 199 | + n_epochs = args.epochs |
| 200 | + optimizer = optim.Adam(model.parameters(), lr=5e-3, weight_decay=1e-4) |
| 201 | + scheduler = CosineAnnealingLR(optimizer, T_max=n_epochs) |
| 202 | + |
| 203 | + if args.static: |
| 204 | + # optionally to switch to the static mode, which can bring speedup |
| 205 | + # on training |
| 206 | + model.q_layer.static_on(wires_per_block=args.wires_per_block) |
| 207 | + |
| 208 | + for epoch in range(1, n_epochs + 1): |
| 209 | + # train |
| 210 | + print(f"Epoch {epoch}:") |
| 211 | + train(dataflow, model, device, optimizer) |
| 212 | + print(optimizer.param_groups[0]["lr"]) |
| 213 | + |
| 214 | + # valid |
| 215 | + valid_test(dataflow, "valid", model, device) |
| 216 | + scheduler.step() |
| 217 | + |
| 218 | + # test |
| 219 | + valid_test(dataflow, "test", model, device, qiskit=False) |
| 220 | + |
| 221 | + |
| 222 | +if __name__ == "__main__": |
| 223 | + main() |
0 commit comments