|
| 1 | +import torch |
| 2 | +import torch.optim as optim |
| 3 | +import torchquantum as tq |
| 4 | +import torchquantum.functional as tqf |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +class QuantumPulseDemo(tq.QuantumModule): |
| 8 | + """ |
| 9 | + Quantum pulse demonstration module. |
| 10 | +
|
| 11 | + This module defines a parameterized quantum pulse and applies it to a quantum device. |
| 12 | + """ |
| 13 | + |
| 14 | + def __init__(self): |
| 15 | + """ |
| 16 | + Initializes the QuantumPulseDemo module. |
| 17 | +
|
| 18 | + Args: |
| 19 | + n_wires (int): Number of quantum wires (qubits). |
| 20 | + n_steps (int): Number of steps for the quantum pulse. |
| 21 | + hamil (list): Hamiltonian for the quantum pulse. |
| 22 | + """ |
| 23 | + super().__init__() |
| 24 | + self.n_wires = 2 |
| 25 | + |
| 26 | + # Quantum encoder |
| 27 | + self.encoder = tq.GeneralEncoder([ |
| 28 | + {'input_idx': [0], 'func': 'rx', 'wires': [0]}, |
| 29 | + {'input_idx': [1], 'func': 'rx', 'wires': [1]} |
| 30 | + ]) |
| 31 | + |
| 32 | + # Define parameterized quantum pulse |
| 33 | + self.pulse = tq.pulse.QuantumPulseDirect(n_steps=4, hamil=[[0, 1], [1, 0]]) |
| 34 | + |
| 35 | + def forward(self, x): |
| 36 | + """ |
| 37 | + Forward pass through the QuantumPulseDemo module. |
| 38 | +
|
| 39 | + Args: |
| 40 | + x (torch.Tensor): Input tensor. |
| 41 | +
|
| 42 | + Returns: |
| 43 | + torch.Tensor: Measurement result from the quantum device. |
| 44 | + """ |
| 45 | + qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=x.shape[0], device=x.device) |
| 46 | + self.encoder(qdev, x) |
| 47 | + self.apply_pulse(qdev) |
| 48 | + return tq.measure(qdev) |
| 49 | + |
| 50 | + def apply_pulse(self, qdev): |
| 51 | + """ |
| 52 | + Applies the parameterized quantum pulse to the quantum device. |
| 53 | +
|
| 54 | + Args: |
| 55 | + qdev (tq.QuantumDevice): Quantum device to apply the pulse to. |
| 56 | + """ |
| 57 | + pulse_params = self.pulse.pulse_shape.detach().cpu().numpy() |
| 58 | + # Apply pulse to the quantum device (adjust based on actual pulse application logic) |
| 59 | + for params in pulse_params: |
| 60 | + tqf.rx(qdev, wires=0, params=params) |
| 61 | + tqf.rx(qdev, wires=1, params=params) |
| 62 | + |
| 63 | +class OM_EOM_Simulation: |
| 64 | + """ |
| 65 | + Optical modulation with electro-optic modulator (EOM) simulation. |
| 66 | +
|
| 67 | + This class simulates a sequence of optical pulses with or without EOM modulation. |
| 68 | + """ |
| 69 | + |
| 70 | + def __init__(self, pulse_duration, modulation_bandwidth=None, eom_mode=False): |
| 71 | + """ |
| 72 | + Initializes the OM_EOM_Simulation. |
| 73 | +
|
| 74 | + Args: |
| 75 | + pulse_duration (float): Duration of each pulse. |
| 76 | + modulation_bandwidth (float, optional): Bandwidth of modulation. Defaults to None. |
| 77 | + eom_mode (bool, optional): Whether to simulate EOM mode. Defaults to False. |
| 78 | + """ |
| 79 | + self.pulse_duration = pulse_duration |
| 80 | + self.modulation_bandwidth = modulation_bandwidth |
| 81 | + self.eom_mode = eom_mode |
| 82 | + |
| 83 | + def simulate_sequence(self): |
| 84 | + """ |
| 85 | + Simulates a sequence of optical pulses with specified parameters. |
| 86 | +
|
| 87 | + Returns: |
| 88 | + list: Sequence of pulses and delays. |
| 89 | + """ |
| 90 | + # Initialize the sequence |
| 91 | + sequence = [] |
| 92 | + |
| 93 | + # Add pulses and delays to the sequence |
| 94 | + if self.modulation_bandwidth: |
| 95 | + # Apply modulation bandwidth effect |
| 96 | + sequence.append(('Delay', 0)) |
| 97 | + sequence.append(('Pulse', 'NoisyChannel')) |
| 98 | + for _ in range(3): |
| 99 | + # Apply pulses with specified duration |
| 100 | + sequence.append(('Delay', self.pulse_duration)) |
| 101 | + if self.eom_mode: |
| 102 | + # Apply EOM mode operation |
| 103 | + sequence.append(('Pulse', 'EOM')) |
| 104 | + else: |
| 105 | + # Apply regular pulse |
| 106 | + sequence.append(('Pulse', 'Regular')) |
| 107 | + # Apply a delay between pulses |
| 108 | + sequence.append(('Delay', 0)) |
| 109 | + |
| 110 | + return sequence |
| 111 | + |
| 112 | +class QuantumPulseDemoRunner: |
| 113 | + """ |
| 114 | + Runner for training the QuantumPulseDemo model and simulating the OM_EOM_Simulation. |
| 115 | + """ |
| 116 | + |
| 117 | + def __init__(self, pulse_duration, modulation_bandwidth=None, eom_mode=False): |
| 118 | + """ |
| 119 | + Initializes the QuantumPulseDemoRunner. |
| 120 | +
|
| 121 | + Args: |
| 122 | + pulse_duration (float): Duration of each pulse. |
| 123 | + modulation_bandwidth (float, optional): Bandwidth of modulation. Defaults to None. |
| 124 | + eom_mode (bool, optional): Whether to simulate EOM mode. Defaults to False. |
| 125 | + """ |
| 126 | + self.model = QuantumPulseDemo() |
| 127 | + self.optimizer = optim.Adam(params=self.model.pulse.parameters(), lr=5e-3) |
| 128 | + self.target_unitary = self._initialize_target_unitary() |
| 129 | + self.simulator = OM_EOM_Simulation(pulse_duration, modulation_bandwidth, eom_mode) |
| 130 | + |
| 131 | + def _initialize_target_unitary(self): |
| 132 | + """ |
| 133 | + Initializes the target unitary matrix. |
| 134 | +
|
| 135 | + Returns: |
| 136 | + torch.Tensor: Target unitary matrix. |
| 137 | + """ |
| 138 | + theta = 0.6 |
| 139 | + return torch.tensor( |
| 140 | + [ |
| 141 | + [np.cos(theta / 2), -1j * np.sin(theta / 2)], |
| 142 | + [-1j * np.sin(theta / 2), np.cos(theta / 2)], |
| 143 | + ], |
| 144 | + dtype=torch.complex64, |
| 145 | + ) |
| 146 | + |
| 147 | + def train(self, epochs=1000): |
| 148 | + """ |
| 149 | + Trains the QuantumPulseDemo model. |
| 150 | +
|
| 151 | + Args: |
| 152 | + epochs (int, optional): Number of training epochs. Defaults to 1000. |
| 153 | + """ |
| 154 | + for epoch in range(epochs): |
| 155 | + x = torch.tensor([[np.pi, np.pi]], dtype=torch.float32) |
| 156 | + |
| 157 | + qdev = self.model(x) |
| 158 | + |
| 159 | + loss = ( |
| 160 | + 1 |
| 161 | + - ( |
| 162 | + torch.trace(self.model.pulse.get_unitary() @ self.target_unitary) |
| 163 | + / self.target_unitary.shape[0] |
| 164 | + ).abs() |
| 165 | + ** 2 |
| 166 | + ) |
| 167 | + |
| 168 | + self.optimizer.zero_grad() |
| 169 | + loss.backward() |
| 170 | + self.optimizer.step() |
| 171 | + |
| 172 | + if epoch % 100 == 0: |
| 173 | + print(f'Epoch {epoch}, Loss: {loss.item()}') |
| 174 | + print('Current Pulse Shape:', self.model.pulse.pulse_shape) |
| 175 | + print('Current Unitary:\n', self.model.pulse.get_unitary()) |
| 176 | + |
| 177 | + def run_simulation(self): |
| 178 | + """ |
| 179 | + Runs the OM_EOM_Simulation. |
| 180 | + """ |
| 181 | + sequence = self.simulator.simulate_sequence() |
| 182 | + for step in sequence: |
| 183 | + print(step) |
| 184 | + |
| 185 | +# Example usage |
| 186 | +runner = QuantumPulseDemoRunner(pulse_duration=100, modulation_bandwidth=5, eom_mode=True) |
| 187 | +runner.train() |
| 188 | +runner.run_simulation() |
0 commit comments