|
| 1 | +""" |
| 2 | +MIT License |
| 3 | +
|
| 4 | +Copyright (c) 2020-present TorchQuantum Authors |
| 5 | +
|
| 6 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | +of this software and associated documentation files (the "Software"), to deal |
| 8 | +in the Software without restriction, including without limitation the rights |
| 9 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | +copies of the Software, and to permit persons to whom the Software is |
| 11 | +furnished to do so, subject to the following conditions: |
| 12 | +
|
| 13 | +The above copyright notice and this permission notice shall be included in all |
| 14 | +copies or substantial portions of the Software. |
| 15 | +
|
| 16 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | +SOFTWARE. |
| 23 | +""" |
| 24 | + |
| 25 | +import random |
| 26 | + |
| 27 | +import numpy as np |
| 28 | +import pytest |
| 29 | +import torch |
| 30 | +import torch.optim as optim |
| 31 | +from qiskit import QuantumCircuit |
| 32 | +from qiskit.circuit import Parameter, ParameterVector |
| 33 | +from torch.optim.lr_scheduler import CosineAnnealingLR |
| 34 | + |
| 35 | +import torchquantum as tq |
| 36 | +from torchquantum.plugin import qiskit2tq |
| 37 | + |
| 38 | +seed = 42 |
| 39 | +random.seed(seed) |
| 40 | +np.random.seed(seed) |
| 41 | +torch.manual_seed(seed) |
| 42 | + |
| 43 | + |
| 44 | +class TQModel(tq.QuantumModule): |
| 45 | + def __init__(self, init_params=None): |
| 46 | + super().__init__() |
| 47 | + self.n_wires = 2 |
| 48 | + self.rx = tq.RX(has_params=True, trainable=True, init_params=[init_params[0]]) |
| 49 | + self.u3_0 = tq.U3(has_params=True, trainable=True, init_params=init_params[1:4]) |
| 50 | + self.u3_1 = tq.U3( |
| 51 | + has_params=True, |
| 52 | + trainable=True, |
| 53 | + init_params=torch.tensor( |
| 54 | + [ |
| 55 | + init_params[4] + init_params[2], |
| 56 | + init_params[5] * init_params[3], |
| 57 | + init_params[6] * init_params[1], |
| 58 | + ] |
| 59 | + ), |
| 60 | + ) |
| 61 | + self.cu3_0 = tq.CU3( |
| 62 | + has_params=True, |
| 63 | + trainable=True, |
| 64 | + init_params=torch.tensor( |
| 65 | + [ |
| 66 | + torch.sin(init_params[7]), |
| 67 | + torch.abs(torch.sin(init_params[8])), |
| 68 | + torch.abs(torch.sin(init_params[9])) |
| 69 | + * torch.exp(init_params[2] + init_params[3]), |
| 70 | + ] |
| 71 | + ), |
| 72 | + ) |
| 73 | + |
| 74 | + def forward(self, q_device: tq.QuantumDevice): |
| 75 | + q_device.reset_states(1) |
| 76 | + self.rx(q_device, wires=0) |
| 77 | + self.u3_0(q_device, wires=0) |
| 78 | + self.u3_1(q_device, wires=1) |
| 79 | + self.cu3_0(q_device, wires=[0, 1]) |
| 80 | + |
| 81 | + |
| 82 | +def get_qiskit_ansatz(): |
| 83 | + ansatz = QuantumCircuit(2) |
| 84 | + ansatz_param = Parameter("Θ") # parameter |
| 85 | + ansatz.rx(ansatz_param, 0) |
| 86 | + ansatz_param_vector = ParameterVector("φ", 9) # parameter vector |
| 87 | + ansatz.u(ansatz_param_vector[0], ansatz_param_vector[1], ansatz_param_vector[2], 0) |
| 88 | + ansatz.u( |
| 89 | + ansatz_param_vector[3] + ansatz_param_vector[1], # parameter expression |
| 90 | + ansatz_param_vector[4] * ansatz_param_vector[2], |
| 91 | + ansatz_param_vector[5] / ansatz_param_vector[0], |
| 92 | + 1, |
| 93 | + ) |
| 94 | + ansatz.cu( |
| 95 | + np.sin(ansatz_param_vector[6]), # numpy functions |
| 96 | + np.abs(np.sin(ansatz_param_vector[7])), # nested numpy functions |
| 97 | + # complex expression |
| 98 | + np.abs(np.sin(ansatz_param_vector[8])) |
| 99 | + * np.exp(ansatz_param_vector[1] + ansatz_param_vector[2]), |
| 100 | + 0.0, |
| 101 | + 0, |
| 102 | + 1, |
| 103 | + ) |
| 104 | + return ansatz |
| 105 | + |
| 106 | + |
| 107 | +def train_step(target_state, device, model, optimizer): |
| 108 | + model(device) |
| 109 | + result_state = device.get_states_1d()[0] |
| 110 | + |
| 111 | + # compute the state infidelity |
| 112 | + loss = 1 - torch.dot(result_state, target_state).abs() ** 2 |
| 113 | + |
| 114 | + optimizer.zero_grad() |
| 115 | + loss.backward() |
| 116 | + optimizer.step() |
| 117 | + |
| 118 | + infidelity = loss.item() |
| 119 | + target_state_vector = target_state.detach().cpu().numpy() |
| 120 | + result_state_vector = result_state.detach().cpu().numpy() |
| 121 | + print( |
| 122 | + f"infidelity (loss): {infidelity}, \n target state : " |
| 123 | + f"{target_state_vector}, \n " |
| 124 | + f"result state : {result_state_vector}\n" |
| 125 | + ) |
| 126 | + return infidelity, target_state_vector, result_state_vector |
| 127 | + |
| 128 | + |
| 129 | +def train(init_params, backend): |
| 130 | + device = torch.device("cpu") |
| 131 | + |
| 132 | + if backend == "qiskit": |
| 133 | + ansatz = get_qiskit_ansatz() |
| 134 | + model = qiskit2tq(ansatz, initial_parameters=init_params).to(device) |
| 135 | + elif backend == "torchquantum": |
| 136 | + model = TQModel(init_params).to(device) |
| 137 | + |
| 138 | + print(f"{backend} model:", model) |
| 139 | + |
| 140 | + n_epochs = 10 |
| 141 | + optimizer = optim.Adam(model.parameters(), lr=1e-2, weight_decay=0) |
| 142 | + scheduler = CosineAnnealingLR(optimizer, T_max=n_epochs) |
| 143 | + |
| 144 | + q_device = tq.QuantumDevice(n_wires=2) |
| 145 | + target_state = torch.tensor([0, 1, 0, 0], dtype=torch.complex64) |
| 146 | + |
| 147 | + result_list = [] |
| 148 | + for epoch in range(1, n_epochs + 1): |
| 149 | + print(f"Epoch {epoch}, LR: {optimizer.param_groups[0]['lr']}") |
| 150 | + result_list.append(train_step(target_state, q_device, model, optimizer)) |
| 151 | + scheduler.step() |
| 152 | + |
| 153 | + return result_list |
| 154 | + |
| 155 | + |
| 156 | +@pytest.mark.parametrize( |
| 157 | + "init_params", |
| 158 | + [ |
| 159 | + torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi), |
| 160 | + torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi), |
| 161 | + torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi), |
| 162 | + ], |
| 163 | +) |
| 164 | +def test_qiskit2tq(init_params): |
| 165 | + qiskit_result = train(init_params, "qiskit") |
| 166 | + tq_result = train(init_params, "torchquantum") |
| 167 | + for qi_tensor, tq_tensor in zip(qiskit_result, tq_result): |
| 168 | + torch.testing.assert_close(qi_tensor[0], tq_tensor[0]) |
| 169 | + torch.testing.assert_close(qi_tensor[1], tq_tensor[1]) |
| 170 | + torch.testing.assert_close(qi_tensor[2], tq_tensor[2]) |
| 171 | + |
| 172 | + |
| 173 | +if __name__ == "__main__": |
| 174 | + test_qiskit2tq(torch.nn.init.uniform_(torch.ones(10), -np.pi, np.pi)) |
0 commit comments