Code release for A Tractable Inference Perspective of Offline RL
This implementation of Trifle builds upon TT-repo. Before proceeding, ensure you have installed the base environments following the instructions in the TT-repo.
git clone https://github.com/Tractables/pyjuice
cd pyjuice
git checkout 293fdc1e2f7967df4f981880e38ad5ca187bcbc7
pip install -e .
cd Trifle/
pip install -e .
To reproduce the results of TT-based Trifle, run the following command:
python scripts/plan.py --dataset halfcheetah-medium-v2
By default, these commands will utilize the hyperparameters specified in config/plan_conf.py
. You can modify these parameters at runtime using command-line arguments:
python scripts/plan.py --dataset halfcheetah-medium-v2 \
--horizon 10 --beam_width 64 --top_ratio 0.15
The TT-repo provides pretrained GPT models, which can be downloaded into logs/$DATASET/gpt/pretrained
.
For the pretrained probabilistic circuit (PC) models used in Trifle, the code will automatically download them from Hugging Face.
@inproceedings{liutractable,
title={A Tractable Inference Perspective of Offline RL},
author={Liu, Xuejie and Liu, Anji and Van den Broeck, Guy and Liang, Yitao},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems}
}