ONNX extension for saving to and loading from safetensors 🤗.
- ✅ Load and save ONNX weights from and to safetensors
- ✅ Support all ONNX data types, including float8, float4 and 4-bit ints
- ✅ Allow ONNX backends (including ONNX Runtime) to use safetensors
pip install --upgrade onnx-safetensors
Tip
You can use safetensors as external data for ONNX.
import os
import onnx
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
tensor_file = "path/to/onnx_model/model.safetensors"
base_dir = "path/to/onnx_model"
data_path = "model.safetensors"
# Apply weights from the safetensors file to the model and turn them to in memory tensor
# NOTE: If model size becomes >2GB you will need to offload weights with onnx_safetensors.save_file, or onnx.save with external data options to keep the onnx model valid
model = onnx_safetensors.load_file(model, tensor_file)
# If you want to use the safetensors file in ONNX Runtime:
# Use safetensors as external data in the ONNX model
model_with_external_data = onnx_safetensors.load_file_as_external_data(model, data_path, base_dir=base_dir)
# Save the modified model
# This model is a valid ONNX model using external data from the safetensors file
onnx.save(model_with_external_data, os.path.join(base_dir, "model_using_safetensors.onnx"))
import onnx
import onnx_safetensors
# Provide your ONNX model here
model: onnx.ModelProto
base_dir = "path/to/onnx_model"
data_path = "model.safetensors"
# Offload weights from ONNX model to safetensors file without changing the model
onnx_safetensors.save_file(model, data_path, base_dir=base_dir, replace_data=False) # Generates model.safetensors
# If you want to use the safetensors file in ONNX Runtime:
# Offload weights from ONNX model to safetensors file and use it as external data for the model by setting replace_data=True
model_with_external_data = onnx_safetensors.save_file(model, data_path, base_dir=base_dir, replace_data=True)
# Save the modified model
# This model is a valid ONNX model using external data from the safetensors file
onnx.save(model_with_external_data, os.path.join(base_dir, "model_using_safetensors.onnx"))