Skip to content
Ilja Bekman edited this page Oct 4, 2016 · 2 revisions

Example of genetic algorithm:

  • 11 Genes, 10 floating point range + 1 tuple
  • 100 individuals, max. 500 generations
  • adoptive Reproduction: take individuals making 50% of the generation fitness
  • Mutate random 50 by 3 genes each
  • Crossover all genes across all individuals
  • Evaluate, Sort

Fitness of the Fittest per Generation Mean Fitness per Generation

  • Ideal Genome with gaussian Mean, Sigma:
  1. 25.,5.
  2. 5.,1.
  3. "myBeryllium"
  4. 4.,0.5
  5. 80.,10.
  6. 14043.,3.
  7. 225.,30.
  8. 225.,30.
  9. 200.,15.
  10. 300.,100.
  11. 5.,1.
  • Recovered Genome after 234 generations
  1. 25.4868131832
  2. 4.97817102581
  3. myBeryllium
  4. 3.9851669444
  5. 79.8413385755
  6. 14043.1807813
  7. 224.218046061
  8. 225.219166708
  9. 203.013448816
  10. 296.675962235
  11. 5.04446313393
Clone this wiki locally