Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump transformers version #724

Merged
merged 16 commits into from
May 29, 2024
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,6 @@
"ignored_scopes": [
"{re}.*__add___[0-1]",
"{re}.*layer_norm_0",
"{re}.*matmul_1",
"{re}.*__truediv__*"
]
}
]
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,6 @@
"ignored_scopes": [
"{re}.*__add___[0-1]",
"{re}.*layer_norm_0",
"{re}.*matmul_1",
"{re}.*__truediv__*"
]
}
]
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,6 @@
"ignored_scopes": [
"{re}.*__add___[0-1]",
"{re}.*layer_norm_0",
"{re}.*matmul_1",
"{re}.*__truediv__*"
]
}
]
2 changes: 0 additions & 2 deletions optimum/intel/openvino/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,8 +153,6 @@
"{re}.*Embedding.*",
"{re}.*add___.*",
"{re}.*layer_norm_.*",
"{re}.*matmul_1",
"{re}.*__truediv__.*",
],
}

Expand Down
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,8 @@

INSTALL_REQUIRE = [
"torch>=1.11",
"transformers>=4.36.0,<4.41.0",
"optimum~=1.19",
"transformers>=4.36.0,<4.42.0",
"optimum~=1.20",
"datasets>=1.4.0",
"sentencepiece",
"scipy",
Expand Down
2 changes: 1 addition & 1 deletion tests/openvino/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1679,7 +1679,7 @@ def test_compare_output_attentions(self, model_arch):
preprocessor = AutoFeatureExtractor.from_pretrained(model_id)
inputs = preprocessor(images=image, return_tensors="pt")

transformers_model = AutoModelForImageClassification.from_pretrained(model_id)
transformers_model = AutoModelForImageClassification.from_pretrained(model_id, attn_implementation="eager")
transformers_model.eval()
with torch.no_grad():
transformers_outputs = transformers_model(**inputs, output_attentions=True)
Expand Down
4 changes: 2 additions & 2 deletions tests/openvino/test_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@

class OVQuantizerTest(unittest.TestCase):
SUPPORTED_ARCHITECTURES_TORCH_MODEL = (
(OVModelForSequenceClassification, "bert", 32, 35),
(OVModelForSequenceClassification, "bert", 22, 35),
(OVModelForCausalLM, "gpt2", 41, 3),
)
SUPPORTED_ARCHITECTURES_OV_MODEL = (
Expand Down Expand Up @@ -665,7 +665,7 @@ def preprocess_function(examples, tokenizer):


class OVTrainerTest(unittest.TestCase):
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("distilbert-base-uncased", 49, 38),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("distilbert-base-uncased", 67, 38),)

@parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS)
def test_aware_training_quantization(self, model_name, expected_fake_quantize, expected_int8):
Expand Down
38 changes: 20 additions & 18 deletions tests/openvino/test_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,30 +322,30 @@ def tearDown(self):
"default_quantization": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=DEFAULT_QUANTIZATION_CONFIG,
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
compression_metrics=["compression_loss"],
),
"distillation,default_quantization": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
teacher_model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=DEFAULT_QUANTIZATION_CONFIG,
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
),
"customized_quantization": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=CUSTOMIZED_QUANTIZATION_CONFIG,
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
compression_metrics=["compression_loss"],
),
"distillation,customized_quantization": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
teacher_model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=CUSTOMIZED_QUANTIZATION_CONFIG,
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
),
Expand All @@ -365,7 +365,7 @@ def tearDown(self):
"default_quantization,structured_movement_sparsity": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss"],
Expand All @@ -376,7 +376,7 @@ def tearDown(self):
CUSTOMIZED_QUANTIZATION_CONFIG,
STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss"],
Expand All @@ -385,7 +385,7 @@ def tearDown(self):
model_id="hf-internal-testing/tiny-random-bert",
teacher_model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand All @@ -397,7 +397,7 @@ def tearDown(self):
CUSTOMIZED_QUANTIZATION_CONFIG,
STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand All @@ -418,7 +418,7 @@ def tearDown(self):
"default_quantization,unstructured_movement_sparsity": OVTrainerTestDescriptor(
model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss"],
Expand All @@ -429,7 +429,7 @@ def tearDown(self):
CUSTOMIZED_QUANTIZATION_CONFIG,
UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss"],
Expand All @@ -438,7 +438,7 @@ def tearDown(self):
model_id="hf-internal-testing/tiny-random-bert",
teacher_model_id="hf-internal-testing/tiny-random-bert",
nncf_compression_config=[DEFAULT_QUANTIZATION_CONFIG, UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand All @@ -450,7 +450,7 @@ def tearDown(self):
CUSTOMIZED_QUANTIZATION_CONFIG,
UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_BERT,
],
expected_fake_quantize=34,
expected_fake_quantize=22,
expected_int8=32,
expected_binary_masks=60,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand Down Expand Up @@ -553,7 +553,7 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
"default_quantization": OVTrainerTestDescriptor(
model_id="yujiepan/tiny-random-swin-patch4-window7-224",
nncf_compression_config=DEFAULT_QUANTIZATION_CONFIG,
expected_fake_quantize=28,
expected_fake_quantize=36,
expected_int8=28,
compression_metrics=["compression_loss"],
),
Expand All @@ -572,15 +572,15 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
"default_quantization,structured_movement_sparsity": OVTrainerTestDescriptor(
model_id="yujiepan/tiny-random-swin-patch4-window7-224",
nncf_compression_config=[STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
expected_fake_quantize=28,
expected_fake_quantize=36,
expected_int8=28,
expected_binary_masks=48,
compression_metrics=["compression_loss"],
),
"default_quantization,unstructured_movement_sparsity": OVTrainerTestDescriptor(
model_id="yujiepan/tiny-random-swin-patch4-window7-224",
nncf_compression_config=[UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
expected_fake_quantize=28,
expected_fake_quantize=36,
expected_int8=28,
expected_binary_masks=48,
compression_metrics=["compression_loss"],
Expand All @@ -589,7 +589,7 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
model_id="yujiepan/tiny-random-swin-patch4-window7-224",
teacher_model_id="yujiepan/tiny-random-swin-patch4-window7-224",
nncf_compression_config=[STRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
expected_fake_quantize=28,
expected_fake_quantize=36,
expected_int8=28,
expected_binary_masks=48,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand All @@ -598,7 +598,7 @@ def check_ovmodel_reshaping(self, ovmodel: OVModel):
model_id="yujiepan/tiny-random-swin-patch4-window7-224",
teacher_model_id="yujiepan/tiny-random-swin-patch4-window7-224",
nncf_compression_config=[UNSTRUCTURED_MOVEMENT_SPARSITY_CONFIG_FOR_SWIN, DEFAULT_QUANTIZATION_CONFIG],
expected_fake_quantize=28,
expected_fake_quantize=36,
expected_int8=28,
expected_binary_masks=48,
compression_metrics=["compression_loss", "distillation_loss", "task_loss"],
Expand Down Expand Up @@ -797,7 +797,9 @@ def prepare_model_and_dataset(self, desc: OVTrainerTestDescriptor):

self.feature_extractor = AutoFeatureExtractor.from_pretrained(desc.model_id)
self.tokenizer = self.feature_extractor
self.model = AutoModelForAudioClassification.from_pretrained(desc.model_id, num_labels=self.num_labels)
self.model = AutoModelForAudioClassification.from_pretrained(
desc.model_id, num_labels=self.num_labels, attn_implementation="eager"
)
self.teacher_model = None
if desc.teacher_model_id:
self.teacher_model = AutoModelForAudioClassification.from_pretrained(
Expand Down
Loading