Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Relax dependency on accelerate and datasets in OVQuantizer #547

Merged
merged 6 commits into from
Feb 16, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 24 additions & 11 deletions optimum/intel/openvino/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,6 @@
import openvino
import torch
import transformers
from accelerate.data_loader import DataLoaderStateMixin
from datasets import Dataset, load_dataset
from nncf import NNCFConfig, compress_weights
from nncf.torch import create_compressed_model, register_default_init_args, register_module
from nncf.torch.dynamic_graph.io_handling import wrap_nncf_model_inputs_with_objwalk
Expand All @@ -33,13 +31,15 @@
from torch.utils.data import DataLoader, RandomSampler
from transformers import DataCollator, PreTrainedModel, default_data_collator
from transformers.pytorch_utils import Conv1D
from transformers.utils import is_accelerate_available

from optimum.exporters.tasks import TasksManager
from optimum.quantization_base import OptimumQuantizer

from ...exporters.openvino import export, export_pytorch_via_onnx
from ...exporters.openvino.stateful import ensure_export_task_support_stateful
from ..utils.constant import _TASK_ALIASES
from ..utils.import_utils import DATASETS_IMPORT_ERROR, is_datasets_available
from .configuration import OVConfig
from .modeling_base import OVBaseModel
from .modeling_decoder import OVBaseDecoderModel
Expand All @@ -51,6 +51,12 @@
)


if is_datasets_available():
try:
from datasets import Dataset
except ImportError:
pass

COMPRESSION_OPTIONS = {
"int8": {"mode": nncf.CompressWeightsMode.INT8},
"int4_sym_g128": {"mode": nncf.CompressWeightsMode.INT4_SYM, "group_size": 128},
Expand All @@ -72,8 +78,11 @@ def get_inputs(self, dataloader_output) -> Tuple[Tuple, Dict]:
@property
def batch_size(self):
batch_size = self._data_loader.batch_size
if batch_size is None and isinstance(self._data_loader, DataLoaderStateMixin):
batch_size = self._data_loader.total_batch_size
if is_accelerate_available():
from accelerate.data_loader import DataLoaderStateMixin

if batch_size is None and isinstance(self._data_loader, DataLoaderStateMixin):
batch_size = self._data_loader.total_batch_size
return batch_size


Expand Down Expand Up @@ -155,7 +164,7 @@ def from_pretrained(cls, model: PreTrainedModel, **kwargs):

def quantize(
self,
calibration_dataset: Dataset = None,
calibration_dataset: "Dataset" = None,
save_directory: Union[str, Path] = None,
quantization_config: OVConfig = None,
file_name: Optional[str] = None,
Expand Down Expand Up @@ -268,7 +277,7 @@ def _get_compression_options(self, config: OVConfig):

def _quantize_ovbasemodel(
self,
calibration_dataset: Dataset,
calibration_dataset: "Dataset",
save_directory: Union[str, Path],
batch_size: int = 1,
data_collator: Optional[DataCollator] = None,
Expand Down Expand Up @@ -304,7 +313,7 @@ def _quantize_ovbasemodel(

def _quantize_ovcausallm(
self,
calibration_dataset: Dataset,
calibration_dataset: "Dataset",
save_directory: Union[str, Path],
batch_size: int = 1,
data_collator: Optional[DataCollator] = None,
Expand Down Expand Up @@ -358,7 +367,7 @@ def _quantize_ovcausallm(

def _quantize_torchmodel(
self,
calibration_dataset: Dataset,
calibration_dataset: "Dataset",
save_directory: Union[str, Path],
quantization_config: OVConfig = None,
file_name: Optional[str] = None,
Expand Down Expand Up @@ -482,7 +491,7 @@ def get_calibration_dataset(
preprocess_batch: bool = True,
use_auth_token: bool = False,
cache_dir: Optional[str] = None,
) -> Dataset:
) -> "Dataset":
"""
Create the calibration `datasets.Dataset` to use for the post-training static quantization calibration step.

Expand All @@ -507,6 +516,10 @@ def get_calibration_dataset(
Returns:
The calibration `datasets.Dataset` to use for the post-training static quantization calibration step.
"""
if not is_datasets_available():
raise ValueError(DATASETS_IMPORT_ERROR.format("OVQuantizer.get_calibration_dataset"))
from datasets import load_dataset

calibration_dataset = load_dataset(
dataset_name,
name=dataset_config_name,
Expand All @@ -526,7 +539,7 @@ def get_calibration_dataset(

def _get_calibration_dataloader(
self,
calibration_dataset: Dataset,
calibration_dataset: "Dataset",
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we can also soon deprecate the input_names attribute as it looks unused (to remove the constraint that calibration_dataset should have column_names attribute, making it optional)

batch_size: int,
remove_unused_columns: bool,
data_collator: Optional[DataCollator] = None,
Expand All @@ -543,6 +556,6 @@ def _get_calibration_dataloader(
)
return OVDataLoader(calibration_dataloader)

def _remove_unused_columns(self, dataset: Dataset):
def _remove_unused_columns(self, dataset: "Dataset"):
ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
return dataset.remove_columns(ignored_columns)
19 changes: 19 additions & 0 deletions optimum/intel/utils/import_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,16 @@
_timm_available = False


_datasets_available = importlib.util.find_spec("datasets") is not None
_datasets_version = "N/A"

if _datasets_available:
try:
_datasets_version = importlib_metadata.version("datasets")
except importlib_metadata.PackageNotFoundError:
_datasets_available = False


def is_transformers_available():
return _transformers_available

Expand Down Expand Up @@ -151,6 +161,10 @@ def is_timm_available():
return _timm_available


def is_datasets_available():
return _datasets_available


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
"""
Expand Down Expand Up @@ -267,6 +281,11 @@ def is_timm_version(operation: str, version: str):
`pip install neural-compressor`. Please note that you may need to restart your runtime after installation.
"""

DATASETS_IMPORT_ERROR = """
{0} requires the datasets library but it was not found in your environment. You can install it with pip:
`pip install datasets`. Please note that you may need to restart your runtime after installation.
"""

BACKENDS_MAPPING = OrderedDict(
[
("diffusers", (is_diffusers_available, DIFFUSERS_IMPORT_ERROR)),
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
"transformers>=4.34.0",
],
"openvino": ["openvino>=2023.2", "onnx", "onnxruntime", "transformers>=4.36.0", "optimum>=1.16.1"],
"nncf": ["nncf>=2.7.0"],
"nncf": ["nncf>=2.7.0", "datasets", "accelerate"],
"ipex": ["intel-extension-for-pytorch", "onnx"],
"diffusers": ["diffusers"],
"quality": QUALITY_REQUIRE,
Expand Down
Loading