Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix beam search in seq2seq #1111

Merged
merged 2 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions optimum/intel/openvino/modeling_seq2seq.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,7 +422,7 @@ def get_encoder(self):
return self.encoder

def _reorder_cache(self, past, beam_idx) -> Tuple[Tuple[torch.FloatTensor]]:
self.decoder._reorder_cache(past, beam_idx)
return self.decoder._reorder_cache(past, beam_idx)

def reshape(self, batch_size: int, sequence_length: int):
"""
Expand Down Expand Up @@ -627,6 +627,7 @@ def forward(
if self.stateful and past_key_values is None:
self.request.reset_state()
self._past_length = 0
self.next_beam_idx = np.arange(input_ids.shape[0], dtype=int)

if past_key_values is not None and not self.stateful:
# Flatten the past_key_values
Expand Down Expand Up @@ -661,7 +662,6 @@ def forward(
inputs["beam_idx"] = (
self.next_beam_idx if self.next_beam_idx is not None else np.arange(batch_size, dtype=np.int32)
)

# Run inference
self.request.start_async(inputs, share_inputs=True)
self.request.wait()
Expand Down Expand Up @@ -1016,7 +1016,6 @@ class _OVModelForWhisper(OVModelForSpeechSeq2Seq, WhisperForConditionalGeneratio
auto_model_class = WhisperForConditionalGeneration

# force the use of the WhisperForConditionalGeneration generate and prepare_inputs_for_generation methods
prepare_inputs_for_generation = WhisperForConditionalGeneration.prepare_inputs_for_generation
generate = WhisperForConditionalGeneration.generate

@classmethod
Expand Down Expand Up @@ -1083,7 +1082,7 @@ def prepare_inputs_for_generation(

past_length = 0
if past_key_values is not None:
self.decoder._get_past_length(past_key_values)
past_length = self.decoder._get_past_length(past_key_values)

# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
Expand Down
34 changes: 32 additions & 2 deletions tests/openvino/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1658,6 +1658,21 @@ def test_compare_to_transformers(self, model_arch):
transformers_outputs = transformers_model(**tokens, **decoder_inputs)
# Compare tensor outputs
self.assertTrue(torch.allclose(ov_outputs.logits, transformers_outputs.logits, atol=1e-4))
gen_config = GenerationConfig(
max_new_tokens=10,
min_new_tokens=10,
num_beams=2,
do_sample=False,
eos_token_id=None,
)

set_seed(SEED)
generated_tokens = transformers_model.generate(**tokens, generation_config=gen_config)
set_seed(SEED)
ov_generated_tokens = ov_model.generate(**tokens, generation_config=gen_config)

self.assertTrue(torch.equal(generated_tokens, ov_generated_tokens))

del transformers_model
del ov_model

Expand Down Expand Up @@ -2355,12 +2370,12 @@ def test_compare_to_transformers(self, model_arch):

processor = get_preprocessor(model_id)
data = self._generate_random_audio_data()
features = processor.feature_extractor(data, return_tensors="pt")
pt_features = processor.feature_extractor(data, return_tensors="pt")
decoder_start_token_id = transformers_model.config.decoder_start_token_id
decoder_inputs = {"decoder_input_ids": torch.ones((1, 1), dtype=torch.long) * decoder_start_token_id}

with torch.no_grad():
transformers_outputs = transformers_model(**features, **decoder_inputs)
transformers_outputs = transformers_model(**pt_features, **decoder_inputs)

for input_type in ["pt", "np"]:
features = processor.feature_extractor(data, return_tensors=input_type)
Expand All @@ -2373,6 +2388,21 @@ def test_compare_to_transformers(self, model_arch):
# Compare tensor outputs
self.assertTrue(torch.allclose(torch.Tensor(ov_outputs.logits), transformers_outputs.logits, atol=1e-3))

gen_config = GenerationConfig(
max_new_tokens=10,
min_new_tokens=10,
num_beams=2,
do_sample=False,
eos_token_id=None,
)

set_seed(SEED)
generated_tokens = transformers_model.generate(**pt_features, generation_config=gen_config)
set_seed(SEED)
ov_generated_tokens = ov_model.generate(**pt_features, generation_config=gen_config)

self.assertTrue(torch.equal(generated_tokens, ov_generated_tokens))

del transformers_model
del ov_model
gc.collect()
Expand Down