forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update : convert coco data format to FLIR, KAIST dataset
- Loading branch information
Showing
42 changed files
with
2,268 additions
and
71 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# Description: Check the FLIR dataset with visualize | ||
|
||
from pycocotools.coco import COCO | ||
import cv2 | ||
import os | ||
import numpy as np | ||
|
||
|
||
COLOR_PALETTE = np.array([[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 0], [255, 0, 255], [0, 255, 255], [255, 255, 255]]) | ||
|
||
def get_category_names(coco): | ||
"""Get category names from COCO annotation file""" | ||
cats = coco.loadCats(coco.getCatIds()) | ||
return {cat['id']: cat['name'] for cat in cats} | ||
|
||
def draw_bbox(image, bbox, category_id, color, category_names): | ||
x, y, w, h = [int(b) for b in bbox] | ||
cv2.rectangle(image, (x, y), (x+w, y+h), color.tolist(), 2) | ||
# Add category label with name | ||
label = f"{category_names.get(category_id, f'unknown-{category_id}')}" | ||
# Get text size for better positioning | ||
(text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2) | ||
# Draw background rectangle for text | ||
cv2.rectangle(image, (x, y-text_height-baseline-5), (x+text_width, y), color.tolist(), -1) | ||
# Draw text | ||
cv2.putText(image, label, (x, y-baseline-3), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) | ||
return image | ||
|
||
|
||
def visualize(coco_path, root, flag): | ||
rgb_root = os.path.join(root, flag + '_RGB') | ||
thermal_root = os.path.join(root, flag + '_thermal') | ||
coco = COCO(coco_path) | ||
|
||
# Get category names from annotation file | ||
category_names = get_category_names(coco) | ||
print("Categories in dataset:", category_names) | ||
|
||
img_ids = coco.getImgIds() | ||
current_idx = 0 | ||
|
||
while True: | ||
# Get current image info | ||
img_info = coco.loadImgs(img_ids[current_idx])[0] | ||
img_name = img_info['file_name_RGB'] | ||
thermal_name = img_info['file_name_IR'] | ||
|
||
# Load RGB and thermal images | ||
rgb_path = os.path.join(rgb_root, img_name) | ||
thermal_path = os.path.join(thermal_root, thermal_name) | ||
|
||
rgb_img = cv2.imread(rgb_path) | ||
thermal_img = cv2.imread(thermal_path) | ||
|
||
if rgb_img is None or thermal_img is None: | ||
print(f"Error loading images: {img_name}") | ||
current_idx = (current_idx + 1) % len(img_ids) | ||
continue | ||
|
||
# Get annotations for current image | ||
ann_ids = coco.getAnnIds(imgIds=img_info['id']) | ||
anns = coco.loadAnns(ann_ids) | ||
|
||
# Draw bounding boxes | ||
rgb_vis = rgb_img.copy() | ||
thermal_vis = thermal_img.copy() | ||
|
||
for ann in anns: | ||
bbox = ann['bbox'] | ||
category_id = ann['category_id'] | ||
color = COLOR_PALETTE[category_id % len(COLOR_PALETTE)] | ||
|
||
rgb_vis = draw_bbox(rgb_vis, bbox, category_id, color, category_names) | ||
thermal_vis = draw_bbox(thermal_vis, bbox, category_id, color, category_names) | ||
|
||
# Display images side by side | ||
combined_img = np.hstack((rgb_vis, thermal_vis)) | ||
cv2.imshow('FLIR Dataset Visualization (Press q to quit, <- or -> to navigate)', combined_img) | ||
|
||
# Handle keyboard input | ||
key = cv2.waitKey(0) & 0xFF | ||
if key == ord('q'): # Quit | ||
break | ||
elif key == 83 or key == ord('d'): # Right arrow or 'd' | ||
current_idx = (current_idx + 1) % len(img_ids) | ||
elif key == 81 or key == ord('a'): # Left arrow or 'a' | ||
current_idx = (current_idx - 1) % len(img_ids) | ||
|
||
cv2.destroyAllWindows() | ||
|
||
|
||
def main(): | ||
coco_path = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/annotations/val.json' | ||
root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/' | ||
flag = os.path.basename(coco_path).split('.')[0] | ||
visualize(coco_path, root, flag) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# Description: Check the FLIR dataset with visualize | ||
|
||
from pycocotools.coco import COCO | ||
import cv2 | ||
import os | ||
import numpy as np | ||
|
||
from check_flir import get_category_names, draw_bbox | ||
COLOR_PALETTE = np.array([[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 0], [255, 0, 255], [0, 255, 255], [255, 255, 255]]) | ||
|
||
# def get_category_names(coco): | ||
# """Get category names from COCO annotation file""" | ||
# cats = coco.loadCats(coco.getCatIds()) | ||
# return {cat['id']: cat['name'] for cat in cats} | ||
|
||
# def draw_bbox(image, bbox, category_id, color, category_names): | ||
# x, y, w, h = [int(b) for b in bbox] | ||
# cv2.rectangle(image, (x, y), (x+w, y+h), color.tolist(), 2) | ||
# # Add category label with name | ||
# label = f"{category_names.get(category_id, f'unknown-{category_id}')}" | ||
# # Get text size for better positioning | ||
# (text_width, text_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2) | ||
# # Draw background rectangle for text | ||
# cv2.rectangle(image, (x, y-text_height-baseline-5), (x+text_width, y), color.tolist(), -1) | ||
# # Draw text | ||
# cv2.putText(image, label, (x, y-baseline-3), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2) | ||
# return image | ||
|
||
|
||
def visualize(coco_path, root, flag): | ||
if flag == 'val': | ||
flag = 'test' | ||
rgb_root = os.path.join(root, 'visible') | ||
thermal_root = os.path.join(root,'infrared') | ||
coco = COCO(coco_path) | ||
|
||
# Get category names from annotation file | ||
category_names = get_category_names(coco) | ||
print("Categories in dataset:", category_names) | ||
|
||
img_ids = coco.getImgIds() | ||
current_idx = 0 | ||
|
||
while True: | ||
# Get current image info | ||
img_info = coco.loadImgs(img_ids[current_idx])[0] | ||
img_name = img_info['file_name'] | ||
thermal_name = img_info['file_name'] | ||
|
||
# Load RGB and thermal images | ||
rgb_path = os.path.join(rgb_root,flag, img_name) | ||
thermal_path = os.path.join(thermal_root,flag, thermal_name) | ||
|
||
rgb_img = cv2.imread(rgb_path) | ||
thermal_img = cv2.imread(thermal_path) | ||
|
||
if rgb_img is None or thermal_img is None: | ||
print(f"Error loading images: {img_name}") | ||
current_idx = (current_idx + 1) % len(img_ids) | ||
continue | ||
|
||
# Get annotations for current image | ||
ann_ids = coco.getAnnIds(imgIds=img_info['id']) | ||
anns = coco.loadAnns(ann_ids) | ||
|
||
# Draw bounding boxes | ||
rgb_vis = rgb_img.copy() | ||
thermal_vis = thermal_img.copy() | ||
|
||
for ann in anns: | ||
bbox = ann['bbox'] | ||
category_id = ann['category_id'] | ||
color = COLOR_PALETTE[category_id % len(COLOR_PALETTE)] | ||
rgb_vis = draw_bbox(rgb_vis, bbox, category_id, color, category_names) | ||
thermal_vis = draw_bbox(thermal_vis, bbox, category_id, color, category_names) | ||
|
||
# Display images side by side | ||
combined_img = np.hstack((rgb_vis, thermal_vis)) | ||
cv2.imshow('FLIR Dataset Visualization (Press q to quit, <- or -> to navigate)', combined_img) | ||
|
||
# Handle keyboard input | ||
key = cv2.waitKey(0) & 0xFF | ||
if key == ord('q'): # Quit | ||
break | ||
elif key == 83 or key == ord('d'): # Right arrow or 'd' | ||
current_idx = (current_idx + 1) % len(img_ids) | ||
elif key == 81 or key == ord('a'): # Left arrow or 'a' | ||
current_idx = (current_idx - 1) % len(img_ids) | ||
|
||
cv2.destroyAllWindows() | ||
|
||
|
||
def main(): | ||
coco_path = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/LLVIP/coco_annotations/train.json' | ||
root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/LLVIP/' | ||
flag = os.path.basename(coco_path).split('.')[0] | ||
visualize(coco_path, root, flag) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
|
||
from pycocotools.coco import COCO | ||
# val_coco = COCO('/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/Annotations/FLIR_coco/val.json') | ||
# num_images = len(coco_annotation.getImgIds()) | ||
# print("Number of images:", num_images) | ||
# # %% | ||
# train_coco = COCO('/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/Annotations/FLIR_coco/train.json') | ||
# num_imgs = len(train_coco.getImgIds()) | ||
# print("Number of images:", num_imgs) | ||
# # %% | ||
# import glob | ||
|
||
# search_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align' | ||
# id = train_coco.getImgIds()[0] | ||
# img = train_coco.loadImgs(id)[0] | ||
|
||
# # %% | ||
# rgb_name = img['file_name_RGB'] | ||
# thermal_name = img['file_name_IR'] | ||
# rgb_files = glob.glob(search_root + '/*/' + rgb_name) | ||
# thermal_files = glob.glob(search_root + '/*/' + thermal_name) | ||
|
||
# %% | ||
|
||
# %% | ||
import shutil | ||
import glob | ||
def copy_files(coco_path, isTrain): | ||
search_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align' | ||
coco = COCO(coco_path) | ||
if isTrain: | ||
rgb_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/train_RGB' | ||
thermal_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/train_thermal' | ||
else: | ||
rgb_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/val_RGB' | ||
thermal_root = '/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/FLIR-align/val_thermal' | ||
|
||
for id in coco.getImgIds(): | ||
img = coco.loadImgs(id)[0] | ||
rgb_name = img['file_name_RGB'] | ||
thermal_name = img['file_name_IR'] | ||
rgb_file = glob.glob(search_root + '/JPEGImages/' + rgb_name)[0] | ||
thermal_file = glob.glob(search_root + '/JPEGImages/' + thermal_name)[0] | ||
rgb_filename = rgb_file.split('/')[-1] | ||
thermal_filename = thermal_file.split('/')[-1] | ||
|
||
shutil.copy2(rgb_file, rgb_root + '/' + rgb_filename) | ||
shutil.copy2(thermal_file, thermal_root + '/' + thermal_filename) | ||
print(f"Copy {rgb_file} to {rgb_root + '/' + rgb_filename} | {thermal_file} to {thermal_root + '/' + thermal_filename}") | ||
|
||
|
||
|
||
# copy_files('/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/Annotations/FLIR_coco/val.json', False) | ||
copy_files('/media/ailab/HDD1/Workspace/dset/Drone-Detection-Benchmark/Source/Annotations/FLIR_coco/train.json', True) |
Oops, something went wrong.