Skip to content

Commit de58f3b

Browse files
committed
fix: replace typehints '|' with Union for backwards compatability.
1 parent 10e35d3 commit de58f3b

File tree

4 files changed

+13
-13
lines changed

4 files changed

+13
-13
lines changed

stonesoup/models/base.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -369,7 +369,7 @@ def _integrate(self, func: np.ndarray, a: np.ndarray, b: np.ndarray) -> np.ndarr
369369

370370
def mean(
371371
self, latents: Latents, time_interval: timedelta, **kwargs
372-
) -> StateVector | StateVectors:
372+
) -> Union[StateVector, StateVectors]:
373373
"""Model mean"""
374374
dt = time_interval.total_seconds()
375375
integrand_f = self._integrand
@@ -383,7 +383,7 @@ def mean(
383383
mu_W=self.mu_W,
384384
)
385385

386-
def covar(self, latents: Latents, time_interval: timedelta, **kwargs) -> CovarianceMatrix | CovarianceMatrices:
386+
def covar(self, latents: Latents, time_interval: timedelta, **kwargs) -> Union[CovarianceMatrix, CovarianceMatrices]:
387387
"""Model covariance"""
388388
dt = time_interval.total_seconds()
389389
integrand_f = self._integrand
@@ -461,11 +461,11 @@ def logcondpdf(self, state1: State, state2: State, latents: Optional[Latents] =
461461

462462
return likelihood
463463

464-
def logpdf(self, state1: State, state2: State, **kwargs) -> Probability | np.ndarray:
464+
def logpdf(self, state1: State, state2: State, **kwargs) -> Union[Probability, np.ndarray]:
465465
r"""Model log pdf/likelihood evaluation function"""
466466
return NotImplementedError
467467

468468

469-
def pdf(self, state1: State, state2: State, **kwargs) -> Probability | np.ndarray:
469+
def pdf(self, state1: State, state2: State, **kwargs) -> Union[Probability, np.ndarray]:
470470
r"""Model pdf/likelihood evaluation function"""
471471
return Probability.from_log_ufunc(self.logpdf(state1, state2, **kwargs))

stonesoup/models/base_driver.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,7 @@ def mean(
178178
dt: float,
179179
mu_W: Optional[float]=None,
180180
**kwargs
181-
) -> StateVector | StateVectors:
181+
) -> Union[StateVector, StateVectors]:
182182
"""Computes a num_samples of mean vectors"""
183183
mu_W = np.atleast_2d(self.mu_W) if mu_W is None else np.atleast_2d(mu_W)
184184

@@ -209,7 +209,7 @@ def covar(
209209
mu_W: Optional[float] = None,
210210
sigma_W2: Optional[float] = None,
211211
**kwargs
212-
) -> CovarianceMatrix | CovarianceMatrices:
212+
) -> Union[CovarianceMatrix, CovarianceMatrices]:
213213
"""Computes covariance matrix / matrices"""
214214
mu_W = np.atleast_2d(self.mu_W) if mu_W is None else np.atleast_2d(mu_W)
215215
sigma_W2 = np.atleast_2d(self.sigma_W2) if sigma_W2 is None else np.atleast_2d(sigma_W2)

stonesoup/models/transition/base.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,7 @@ def ndim_state(self):
178178
return sum(model.ndim_state for model in self.model_list)
179179

180180

181-
def mean(self, **kwargs) -> StateVector | StateVectors:
181+
def mean(self, **kwargs) -> Union[StateVector, StateVectors]:
182182
"""Returns the transition model noise mean matrix.
183183
184184
Returns
@@ -194,7 +194,7 @@ def mean(self, **kwargs) -> StateVector | StateVectors:
194194
return np.concatenate(mean_list, axis=1).view(StateVectors)
195195

196196

197-
def covar(self, **kwargs) -> CovarianceMatrix | CovarianceMatrices:
197+
def covar(self, **kwargs) -> Union[CovarianceMatrix, CovarianceMatrices]:
198198
"""Returns the transition model noise covariance matrix.
199199
200200
Returns

stonesoup/models/transition/levylinear.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from datetime import timedelta
1010
from scipy.integrate import quad_vec
1111
from scipy.linalg import expm, block_diag
12-
from typing import Optional
12+
from typing import Optional, Union
1313

1414

1515
class LinearLevyTransitionModel(TransitionModel, LinearModel, LevyModel):
@@ -93,11 +93,11 @@ def matrix(self, time_interval, **kwargs):
9393

9494
def rvs(
9595
self,
96-
latents: Latents | None = None,
96+
latents: Optional[Latents] = None,
9797
num_samples: int = 1,
9898
random_state: RandomState = None,
9999
**kwargs
100-
) -> StateVector | StateVectors:
100+
) -> Union[StateVector, StateVectors]:
101101
coeff = self.noise_diff_coeff
102102
return super().rvs(latents, num_samples, random_state, **kwargs) * coeff
103103

@@ -187,11 +187,11 @@ def matrix(self, time_interval, **kwargs):
187187

188188
def rvs(
189189
self,
190-
latents: Latents | None = None,
190+
latents: Optional[Latents] = None,
191191
num_samples: int = 1,
192192
random_state: RandomState = None,
193193
**kwargs
194-
) -> StateVector | StateVectors:
194+
) -> Union[StateVector, StateVectors]:
195195
coeff = self.noise_diff_coeff
196196
return super().rvs(latents, num_samples, random_state, **kwargs) * coeff
197197

0 commit comments

Comments
 (0)