@@ -22,7 +22,7 @@ In the linear MPC formulation, all motion and constraint expressions are linear.
22
22
23
23
$$
24
24
\begin{gather}
25
- x_{k+1}=Ax_{k}+Bu_{k}+w_{k}, y_{k}=Cx_{k} \tag{1} \\
25
+ x_{k+1}=Ax_{k}+Bu_{k}+w_{k}, y_{k}=Cx_{k} \tag{1} \\\
26
26
x_{k}\in R^{n},u_{k}\in R^{m},w_{k}\in R^{n}, y_{k}\in R^{l}, A\in R^{n\times n}, B\in R^{n\times m}, C\in R^{l \times n}
27
27
\end{gather}
28
28
$$
@@ -47,29 +47,29 @@ Then, when $k=2$, using also equation (2), we get
47
47
48
48
$$
49
49
\begin{align}
50
- x_{2} & = Ax_{1} + Bu_{1} + w_{1} \\
51
- & = A(Ax_{0} + Bu_{0} + w_{0}) + Bu_{1} + w_{1} \\
52
- & = A^{2}x_{0} + ABu_{0} + Aw_{0} + Bu_{1} + w_{1} \\
53
- & = A^{2}x_{0} + \begin{bmatrix}AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \end{bmatrix} + \begin{bmatrix}A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \end{bmatrix} \tag{3}
50
+ x_{2} & = Ax_{1} + Bu_{1} + w_{1} \\\
51
+ & = A(Ax_{0} + Bu_{0} + w_{0}) + Bu_{1} + w_{1} \\\
52
+ & = A^{2}x_{0} + ABu_{0} + Aw_{0} + Bu_{1} + w_{1} \\\
53
+ & = A^{2}x_{0} + \begin{bmatrix}AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \end{bmatrix} + \begin{bmatrix}A & I \end{bmatrix}\begin{bmatrix}w_{0}\ \\ w_{1} \end{bmatrix} \tag{3}
54
54
\end{align}
55
55
$$
56
56
57
57
When $k=3$ , from equation (3)
58
58
59
59
$$
60
60
\begin{align}
61
- x_{3} & = Ax_{2} + Bu_{2} + w_{2} \\
62
- & = A(A^{2}x_{0} + ABu_{0} + Bu_{1} + Aw_{0} + w_{1} ) + Bu_{2} + w_{2} \\
63
- & = A^{3}x_{0} + A^{2}Bu_{0} + ABu_{1} + A^{2}w_{0} + Aw_{1} + Bu_{2} + w_{2} \\
64
- & = A^{3}x_{0} + \begin{bmatrix}A^{2}B & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ u_{2} \end{bmatrix} + \begin{bmatrix} A^{2} & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ w_{2} \end{bmatrix} \tag{4}
61
+ x_{3} & = Ax_{2} + Bu_{2} + w_{2} \\\
62
+ & = A(A^{2}x_{0} + ABu_{0} + Bu_{1} + Aw_{0} + w_{1} ) + Bu_{2} + w_{2} \\\
63
+ & = A^{3}x_{0} + A^{2}Bu_{0} + ABu_{1} + A^{2}w_{0} + Aw_{1} + Bu_{2} + w_{2} \\\
64
+ & = A^{3}x_{0} + \begin{bmatrix}A^{2}B & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ u_{2} \end{bmatrix} + \begin{bmatrix} A^{2} & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \ \\ w_{2} \end{bmatrix} \tag{4}
65
65
\end{align}
66
66
$$
67
67
68
68
If $k=n$ , then
69
69
70
70
$$
71
71
\begin{align}
72
- x_{n} = A^{n}x_{0} + \begin{bmatrix}A^{n-1}B & A^{n-2}B & \dots & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ \vdots \\ u_{n-1} \end{bmatrix} + \begin{bmatrix} A^{n-1} & A^{n-2} & \dots & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ \vdots \\ w_{n-1} \end{bmatrix}
72
+ x_{n} = A^{n}x_{0} + \begin{bmatrix}A^{n-1}B & A^{n-2}B & \dots & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ \vdots \\\ u_{n-1} \end{bmatrix} + \begin{bmatrix} A^{n-1} & A^{n-2} & \dots & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \\\ \vdots \ \\ w_{n-1} \end{bmatrix}
73
73
\tag{5}
74
74
\end{align}
75
75
$$
@@ -78,8 +78,8 @@ Putting all of them together with (2) to (5) yields the following matrix equatio
78
78
79
79
$$
80
80
\begin{align}
81
- \begin{bmatrix}x_{1}\\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix}A^{1}\\ A^{2} \\ A^{3} \\ \vdots \\ A^{n} \end{bmatrix}x_{0} + \begin{bmatrix}B & 0 & \dots & & 0 \\ AB & B & 0 & \dots & 0 \\ A^{2}B & AB & B & \dots & 0 \\ \vdots & \vdots & & & 0 \\ A^{n-1}B & A^{n-2}B & \dots & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\ u_{1} \\ u_{2} \\ \vdots \\ u_{n-1} \end{bmatrix} \\ +
82
- \begin{bmatrix}I & 0 & \dots & & 0 \\ A & I & 0 & \dots & 0 \\ A^{2} & A & I & \dots & 0 \\ \vdots & \vdots & & & 0 \\ A^{n-1} & A^{n-2} & \dots & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\ w_{1} \\ w_{2} \\ \vdots \\ w_{n-1} \end{bmatrix}
81
+ \begin{bmatrix}x_{1}\\\ x_{2} \\\ x_{3} \\\ \vdots \\\ x_{n} \end{bmatrix} = \begin{bmatrix}A^{1}\\\ A^{2} \\\ A^{3} \\\ \vdots \\\ A^{n} \end{bmatrix}x_{0} + \begin{bmatrix}B & 0 & \dots & & 0 \\\ AB & B & 0 & \dots & 0 \\\ A^{2}B & AB & B & \dots & 0 \\\ \vdots & \vdots & & & 0 \\\ A^{n-1}B & A^{n-2}B & \dots & AB & B \end{bmatrix}\begin{bmatrix}u_{0}\\\ u_{1} \\\ u_{2} \\\ \vdots \\\ u_{n-1} \end{bmatrix} \ \\ +
82
+ \begin{bmatrix}I & 0 & \dots & & 0 \\\ A & I & 0 & \dots & 0 \\\ A^{2} & A & I & \dots & 0 \\\ \vdots & \vdots & & & 0 \\\ A^{n-1} & A^{n-2} & \dots & A & I \end{bmatrix}\begin{bmatrix}w_{0}\\\ w_{1} \\\ w_{2} \\\ \vdots \ \\ w_{n-1} \end{bmatrix}
83
83
\tag{6}
84
84
\end{align}
85
85
$$
@@ -88,7 +88,7 @@ In this case, the measurements (outputs) become; $y_{k}=Cx_{k}$, so
88
88
89
89
$$
90
90
\begin{align}
91
- \begin{bmatrix}y_{1}\\ y_{2} \\ y_{3} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix}C & 0 & \dots & & 0 \\ 0 & C & 0 & \dots & 0 \\ 0 & 0 & C & \dots & 0 \\ \vdots & & & \ddots & 0 \\ 0 & \dots & 0 & 0 & C \end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} \tag{7}
91
+ \begin{bmatrix}y_{1}\\\ y_{2} \\\ y_{3} \\\ \vdots \\\ y_{n} \end{bmatrix} = \begin{bmatrix}C & 0 & \dots & & 0 \\\ 0 & C & 0 & \dots & 0 \\\ 0 & 0 & C & \dots & 0 \\\ \vdots & & & \ddots & 0 \\\ 0 & \dots & 0 & 0 & C \end{bmatrix}\begin{bmatrix}x_{1}\\\ x_{2} \\\ x_{3} \\\ \vdots \ \\ x_{n} \end{bmatrix} \tag{7}
92
92
\end{align}
93
93
$$
94
94
@@ -124,7 +124,7 @@ Substituting equation (8) into equation (9) and tidying up the equation for $U$.
124
124
125
125
$$
126
126
\begin{align}
127
- J(U) &= (H(Fx_{0}+GU+SW)-Y_{ref})^{T}Q(H(Fx_{0}+GU+SW)-Y_{ref})+(U-U_{ref})^{T}R(U-U_{ref}) \\
127
+ J(U) &= (H(Fx_{0}+GU+SW)-Y_{ref})^{T}Q(H(Fx_{0}+GU+SW)-Y_{ref})+(U-U_{ref})^{T}R(U-U_{ref}) \\\
128
128
& =U^{T}(G^{T}H^{T}QHG+R)U+2\lbrace\{(H(Fx_{0}+SW)-Y_{ref})^{T}QHG-U_{ref}^{T}R\rbrace\}U +(\rm{constant}) \tag{10}
129
129
\end{align}
130
130
$$
@@ -141,9 +141,9 @@ For a nonlinear kinematic vehicle model, the discrete-time update equations are
141
141
142
142
$$
143
143
\begin{align}
144
- x_{k+1} &= x_{k} + v\cos\theta_{k} \text{d}t \\
145
- y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\
146
- \theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t \tag{11} \\
144
+ x_{k+1} &= x_{k} + v\cos\theta_{k} \text{d}t \\\
145
+ y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\\
146
+ \theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t \tag{11} \\\
147
147
\delta_{k+1} &= \delta_{k} - \tau^{-1}\left(\delta_{k}-\delta_{des}\right)\text{d}t
148
148
\end{align}
149
149
$$
@@ -171,9 +171,9 @@ We make small angle assumptions for the following derivations of linear equation
171
171
172
172
$$
173
173
\begin{align}
174
- y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\
174
+ y_{k+1} &= y_{k} + v\sin\theta_{k} \text{d}t \\\
175
175
\theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L} \text{d}t - \kappa_{r}v\cos\theta_{k}\text{d}t
176
- \tag{12} \\
176
+ \tag{12} \\\
177
177
\delta_{k+1} &= \delta_{k} - \tau^{-1}\left(\delta_{k}-\delta_{des}\right)\text{d}t
178
178
\end{align}
179
179
$$
@@ -202,9 +202,9 @@ Substituting this equation into equation (12), and approximate $\Delta\delta$ to
202
202
203
203
$$
204
204
\begin{align}
205
- \tan\delta &\simeq \tan\delta_{r} + \frac{\text{d}\tan\delta}{\text{d}\delta} \Biggm|_{\delta=\delta_{r}}\Delta\delta \\
206
- &= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\Delta\delta \\
207
- &= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\left(\delta-\delta_{r}\right) \\
205
+ \tan\delta &\simeq \tan\delta_{r} + \frac{\text{d}\tan\delta}{\text{d}\delta} \Biggm|_{\delta=\delta_{r}}\Delta\delta \\\
206
+ &= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\Delta\delta \\\
207
+ &= \tan \delta_{r} + \frac{1}{\cos^{2}\delta_{r}}\left(\delta-\delta_{r}\right) \\\
208
208
&= \tan \delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta
209
209
\end{align}
210
210
$$
@@ -213,9 +213,9 @@ Using this, $\theta_{k+1}$ can be expressed
213
213
214
214
$$
215
215
\begin{align}
216
- \theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L}\text{d}t - \kappa_{r}v\cos\delta_{k}\text{d}t \\
217
- &\simeq \theta_{k} + \frac{v}{L}\text{d}t\left(\tan\delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\
218
- &= \theta_{k} + \frac{v}{L}\text{d}t\left(L\kappa_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\
216
+ \theta_{k+1} &= \theta_{k} + \frac{v\tan\delta_{k}}{L}\text{d}t - \kappa_{r}v\cos\delta_{k}\text{d}t \\\
217
+ &\simeq \theta_{k} + \frac{v}{L}\text{d}t\left(\tan\delta_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\\
218
+ &= \theta_{k} + \frac{v}{L}\text{d}t\left(L\kappa_{r} - \frac{\delta_{r}}{\cos^{2}\delta_{r}} + \frac{1}{\cos^{2}\delta_{r}}\delta_{k} \right) - \kappa_{r}v\text{d}t \\\
219
219
&= \theta_{k} + \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}}\delta_{k} - \frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}}
220
220
\end{align}
221
221
$$
@@ -224,7 +224,7 @@ Finally, the linearized time-varying model equation becomes;
224
224
225
225
$$
226
226
\begin{align}
227
- \begin{bmatrix} y_{k+1} \\ \theta_{k+1} \\ \delta_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & v\text{d}t & 0 \\ 0 & 1 & \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}} \\ 0 & 0 & 1 - \tau^{-1}\text{d}t \end{bmatrix} \begin{bmatrix} y_{k} \\ \theta_{k} \\ \delta_{k} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \tau^{-1}\text{d}t \end{bmatrix}\delta_{des} + \begin{bmatrix} 0 \\ -\frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}} \\ 0 \end{bmatrix}
227
+ \begin{bmatrix} y_{k+1} \\\ \theta_{k+1} \\\ \delta_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & v\text{d}t & 0 \\\ 0 & 1 & \frac{v}{L}\frac{\text{d}t}{\cos^{2}\delta_{r}} \\\ 0 & 0 & 1 - \tau^{-1}\text{d}t \end{bmatrix} \begin{bmatrix} y_{k} \\\ \theta_{k} \\\ \delta_{k} \end{bmatrix} + \begin{bmatrix} 0 \\\ 0 \\\ \tau^{-1}\text{d}t \end{bmatrix}\delta_{des} + \begin{bmatrix} 0 \\\ -\frac{v}{L}\frac{\delta_{r}\text{d}t}{\cos^{2}\delta_{r}} \ \\ 0 \end{bmatrix}
228
228
\end{align}
229
229
$$
230
230
@@ -243,23 +243,23 @@ Using this equation, write down the update equation likewise (2) ~ (6)
243
243
$$
244
244
\begin{align}
245
245
\begin{bmatrix}
246
- x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}
246
+ x_{1} \\\ x_{2} \\\ x_{3} \\\ \vdots \ \\ x_{n}
247
247
\end{bmatrix}
248
248
= \begin{bmatrix}
249
- A_{1} \\ A_{1}A_{0} \\ A_{2}A_{1}A_{0} \\ \vdots \\ \prod_{i=0}^{n-1} A_{k}
249
+ A_{1} \\\ A_{1}A_{0} \\\ A_{2}A_{1}A_{0} \\\ \vdots \ \\ \prod_{i=0}^{n-1} A_{k}
250
250
\end{bmatrix}
251
251
x_{0} +
252
252
\begin{bmatrix}
253
- B_{0} & 0 & \dots & & 0 \\ A_{1}B_{0} & B_{1} & 0 & \dots & 0 \\ A_{2}A_{1}B_{0} & A_{2}B_{1} & B_{2} & \dots & 0 \\ \vdots & \vdots & &\ddots & 0 \\ \prod_{i=1}^{n-1} A_{k}B_{0} & \prod_{i=2}^{n-1} A_{k}B_{1} & \dots & A_{n-1}B_{n-1} & B_{n-1}
253
+ B_{0} & 0 & \dots & & 0 \\\ A_{1}B_{0} & B_{1} & 0 & \dots & 0 \\\ A_{2}A_{1}B_{0} & A_{2}B_{1} & B_{2} & \dots & 0 \\\ \vdots & \vdots & &\ddots & 0 \ \\ \prod_{i=1}^{n-1} A_{k}B_{0} & \prod_{i=2}^{n-1} A_{k}B_{1} & \dots & A_{n-1}B_{n-1} & B_{n-1}
254
254
\end{bmatrix}
255
255
\begin{bmatrix}
256
- u_{0} \\ u_{1} \\ u_{2} \\ \vdots \\ u_{n-1}
256
+ u_{0} \\\ u_{1} \\\ u_{2} \\\ \vdots \ \\ u_{n-1}
257
257
\end{bmatrix} +
258
258
\begin{bmatrix}
259
- I & 0 & \dots & & 0 \\ A_{1} & I & 0 & \dots & 0 \\ A_{2}A_{1} & A_{2} & I & \dots & 0 \\ \vdots & \vdots & &\ddots & 0 \\ \prod_{i=1}^{n-1} A_{k} & \prod_{i=2}^{n-1} A_{k} & \dots & A_{n-1} & I
259
+ I & 0 & \dots & & 0 \\\ A_{1} & I & 0 & \dots & 0 \\\ A_{2}A_{1} & A_{2} & I & \dots & 0 \\\ \vdots & \vdots & &\ddots & 0 \ \\ \prod_{i=1}^{n-1} A_{k} & \prod_{i=2}^{n-1} A_{k} & \dots & A_{n-1} & I
260
260
\end{bmatrix}
261
261
\begin{bmatrix}
262
- w_{0} \\ w_{1} \\ w_{2} \\ \vdots \\ w_{n-1}
262
+ w_{0} \\\ w_{1} \\\ w_{2} \\\ \vdots \ \\ w_{n-1}
263
263
\end{bmatrix}
264
264
\end{align}
265
265
$$
@@ -280,7 +280,7 @@ As an example, let's determine the weight matrix $Q_{1}$ of the evaluation funct
280
280
281
281
$$
282
282
\begin{align}
283
- Q_{1} = \begin{bmatrix} q_{e} & 0 & 0 & 0 & 0& 0 \\ 0 & q_{\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q_{e} & 0 & 0 \\ 0 & 0 & 0 & 0 & q_{\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
283
+ Q_{1} = \begin{bmatrix} q_{e} & 0 & 0 & 0 & 0& 0 \\\ 0 & q_{\theta} & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & q_{e} & 0 & 0 \\\ 0 & 0 & 0 & 0 & q_{\theta} & 0 \ \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
284
284
\end{align}
285
285
$$
286
286
@@ -302,7 +302,7 @@ For instance, write $Q_{2}$ as follows for the $n=2$ system.
302
302
303
303
$$
304
304
\begin{align}
305
- Q_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & q_{d} & 0 & 0 & -q_{d} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -q_{d} & 0 & 0 & q_{d} \end{bmatrix}
305
+ Q_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & q_{d} & 0 & 0 & -q_{d} \\\ 0 & 0 & 0 & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0 \ \\ 0 & 0 & -q_{d} & 0 & 0 & q_{d} \end{bmatrix}
306
306
\end{align}
307
307
$$
308
308
@@ -356,7 +356,7 @@ Along the prediction or control horizon, i.e for setting $n=3$
356
356
357
357
$$
358
358
\begin{align}
359
- \dot u_{min}\text{d}t < u_{1} - u_{0} < \dot u_{max}\text{d}t \\
359
+ \dot u_{min}\text{d}t < u_{1} - u_{0} < \dot u_{max}\text{d}t \\\
360
360
\dot u_{min}\text{d}t < u_{2} - u_{1} < \dot u_{max}\text{d}t
361
361
\end{align}
362
362
$$
@@ -365,9 +365,9 @@ and aligning the inequality signs
365
365
366
366
$$
367
367
\begin{align}
368
- u_{1} - u_{0} &< \dot u_{max}\text{d}t \\ +
369
- u_{1} + u_{0} &< -\dot u_{min}\text{d}t \\
370
- u_{2} - u_{1} &< \dot u_{max}\text{d}t \\ +
368
+ u_{1} - u_{0} &< \dot u_{max}\text{d}t \\\ +
369
+ u_{1} + u_{0} &< -\dot u_{min}\text{d}t \\\
370
+ u_{2} - u_{1} &< \dot u_{max}\text{d}t \\\ +
371
371
u_{2} + u_{1} &< - \dot u_{min}\text{d}t
372
372
\end{align}
373
373
$$
@@ -384,6 +384,6 @@ Thus, putting this inequality to fit the form above, the constraints against $\d
384
384
385
385
$$
386
386
\begin{align}
387
- \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} u_{0} \\ u_{1} \\ u_{2} \end{bmatrix} \leq \begin{bmatrix} \dot u_{max}\text{d}t \\ -\dot u_{min}\text{d}t \\ \dot u_{max}\text{d}t \\ -\dot u_{min}\text{d}t \end{bmatrix}
387
+ \begin{bmatrix} -1 & 1 & 0 \\\ 1 & -1 & 0 \\\ 0 & -1 & 1 \\\ 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} u_{0} \\\ u_{1} \\\ u_{2} \end{bmatrix} \leq \begin{bmatrix} \dot u_{max}\text{d}t \\\ -\dot u_{min}\text{d}t \\\ \dot u_{max}\text{d}t \ \\ -\dot u_{min}\text{d}t \end{bmatrix}
388
388
\end{align}
389
389
$$
0 commit comments