Skip to content

Commit 06ab87b

Browse files
committed
refactor(lidar_centerpoint): update docs.
Signed-off-by: Kaan Çolak <kaancolak95@gmail.com>
1 parent 48afb5c commit 06ab87b

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

perception/lidar_centerpoint/README.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.6 -c pytorch -
104104
pip install -U openmim
105105
mim install mmengine
106106
mim install 'mmcv>=2.0.0rc4'
107-
mim install 'mmdet>=3.0.0'
107+
mim install 'mmdet>=3.0.0rc5, <3.3.0'
108108
```
109109

110110
**Step 2.** Install mmdetection3d forked repository
@@ -141,7 +141,7 @@ python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./dat
141141
#### Prepare the config file
142142

143143
The configuration file that illustrates how to train the CenterPoint model with the NuScenes dataset is
144-
located at mmdetection3d/configs/centerpoint/centerpoint_custom.py. This configuration file is a derived version of the
144+
located at mmdetection3d/projects/AutowareCenterPoint/configs. This configuration file is a derived version of the
145145
centerpoint_pillar02_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py configuration file from mmdetection3D.
146146
In this custom configuration, the **use_voxel_center_z parameter** is set to **False** to deactivate the z coordinate of the voxel center,
147147
aligning with the original paper's specifications and making the model compatible with Autoware. Additionally, the filter size is set as **[32, 32]**.
@@ -152,7 +152,7 @@ This includes adjustments related to preprocessing operations, training, testing
152152
#### Start training
153153

154154
```bash
155-
python tools/train.py configs/centerpoint/centerpoint_custom.py --work-dir ./work_dirs/centerpoint_custom
155+
python tools/train.py projects/AutowareCenterPoint/configs/centerpoint_custom.py --work-dir ./work_dirs/centerpoint_custom
156156
```
157157

158158
#### Evaluation of the trained model
@@ -185,7 +185,7 @@ python tools/create_data.py Tier4Dataset --root-path data/sample_dataset/ --out-
185185
Run evaluation
186186

187187
```bash
188-
python tools/test.py ./configs/centerpoint/test-centerpoint.py /PATH/OF/THE/CHECKPOINT --task lidar_det
188+
python tools/test.py projects/AutowareCenterPoint/configs/centerpoint_custom_test.py /PATH/OF/THE/CHECKPOINT --task lidar_det
189189
```
190190

191191
Evaluation results could be relatively low because of the e to variations in sensor modalities between the sample dataset
@@ -200,10 +200,10 @@ the base link location of the vehicle.
200200
The lidar_centerpoint implementation requires two ONNX models as input the voxel encoder and the backbone-neck-head of the CenterPoint model, other aspects of the network,
201201
such as preprocessing operations, are implemented externally. Under the fork of the mmdetection3d repository,
202202
we have included a script that converts the CenterPoint model to Autoware compatible ONNX format.
203-
You can find it in `mmdetection3d/tools/centerpoint_onnx_converter.py` file.
203+
You can find it in `mmdetection3d/projects/AutowareCenterPoint` file.
204204

205205
```bash
206-
python tools/centerpoint_onnx_converter.py --cfg configs/centerpoint/centerpoint_custom.py --ckpt work_dirs/centerpoint_custom/YOUR_BEST_MODEL.pth -work-dir ./work_dirs/onnx_models
206+
python projects/AutowareCenterPoint/centerpoint_onnx_converter.py --cfg projects/AutowareCenterPoint/configs/centerpoint_custom.py --ckpt work_dirs/centerpoint_custom/YOUR_BEST_MODEL.pth --work-dir ./work_dirs/onnx_models
207207
```
208208

209209
#### Create the config file for the custom model

0 commit comments

Comments
 (0)