Skip to content

TomasSilva/MLGeometry

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLGeometry

Higher dimensional computational geometry using machine learning software

  • Kahler geometry and Kahler-Einstein metrics

More to come.

Set up the environment

  1. Install conda via Anaconda or Miniconda

  2. Install the jupyter notebook in the base environment:

    conda install -c conda-forge notebook
    conda install -c conda-forge nb_conda_kernels
    conda install -c conda-forge cudatoolkit=11.8.0
    
  3. Create the environment with necessary packages:

    conda create -n MLGeometry pip tensorflow-probability sympy matplotlib ipykernel
    
  4. Activate the environment and install Tensorflow:

    conda activate MLGeometry
    python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.*
    mkdir -p $CONDA_PREFIX/etc/conda/activate.d
    echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    echo 'export LD_LIBRARY_PATH=$CONDA_PREFIX/lib/:$CUDNN_PATH/lib:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
    
  5. Verify install:

    python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
    
  6. Open Jupyter with jupyter-notebook in the command line, and change the kernel in Kernel -> Change kernel -> Python [conda env:MLGeometry]

  7. Clone the repository

    git clone https://github.com/yidiq7/MLGeometry/
    

    Or download the released version here

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 51.2%
  • Jupyter Notebook 48.0%
  • Shell 0.8%