Higher dimensional computational geometry using machine learning software
- Kahler geometry and Kahler-Einstein metrics
More to come.
-
Install the jupyter notebook in the base environment:
conda install -c conda-forge notebook conda install -c conda-forge nb_conda_kernels conda install -c conda-forge cudatoolkit=11.8.0
-
Create the environment with necessary packages:
conda create -n MLGeometry pip tensorflow-probability sympy matplotlib ipykernel
-
Activate the environment and install Tensorflow:
conda activate MLGeometry python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.* mkdir -p $CONDA_PREFIX/etc/conda/activate.d echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh echo 'export LD_LIBRARY_PATH=$CONDA_PREFIX/lib/:$CUDNN_PATH/lib:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
-
Verify install:
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
-
Open Jupyter with
jupyter-notebook
in the command line, and change the kernel in Kernel -> Change kernel -> Python [conda env:MLGeometry] -
Clone the repository
git clone https://github.com/yidiq7/MLGeometry/
Or download the released version here