-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete_solar_system_3d.py
756 lines (679 loc) · 32.4 KB
/
complete_solar_system_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.colors as mcolors
from matplotlib.animation import FFMpegWriter
import os
OS_PATH = os.path.dirname(os.path.realpath('__file__'))
class Config:
SETTINGS = {
'frames': 3000,
'camera_distance': 100,
'min_camera_distance': 3,
'max_camera_distance': 100000,
'zoom_speed': 0.0075,
'base_speed': 0.2,
'asteroid_counts': {
'belt': 2000,
'hildas': 300,
'trojans': 300,
'kuiper': 4000,
'inner_oort': 40000,
'outer_oort': 60000,
},
'planets': {
'Mercury': {
'color': 'gray',
'size': 20,
'orbital_period': 0.24,
'orbital_radius': 1,
'inclination': 7.0,
'moons': {} # Mercury has no moons
},
'Venus': {
'color': 'orange',
'size': 30,
'orbital_period': 0.62,
'orbital_radius': 1.8,
'inclination': 3.4,
'moons': {} # Venus has no moons
},
'Earth': {
'color': 'blue',
'size': 30,
'orbital_period': 1.0,
'orbital_radius': 2.5,
'inclination': 0.0,
'moons': {
'Moon': {
'color': 'gray',
'size': 8, # Relative to Earth
'orbital_period': 27.32, # In Earth days
'orbital_radius': 30.3, # In Earth radii
'inclination': 5.145 # Degrees relative to Earth's equator
}
}
},
'Mars': {
'color': 'red',
'size': 25,
'orbital_period': 1.88,
'orbital_radius': 3.8,
'inclination': 1.9,
'moons': {
'Phobos': {
'color': 'gray',
'size': 2,
'orbital_period': 0.319,
'orbital_radius': 4.76,
'inclination': 1.093
},
'Deimos': {
'color': 'gray',
'size': 1,
'orbital_period': 1.263,
'orbital_radius': 12.92,
'inclination': 0.93
}
}
},
'Jupiter': {
'color': 'orange',
'size': 60,
'orbital_period': 11.86,
'orbital_radius': 13,
'inclination': 1.3,
'moons': {
'Io': {
'color': 'yellow',
'size': 10,
'orbital_period': 1.769,
'orbital_radius': 5.9,
'inclination': 0.04
},
'Europa': {
'color': 'white',
'size': 8,
'orbital_period': 3.551,
'orbital_radius': 9.4,
'inclination': 0.47
},
'Ganymede': {
'color': 'gray',
'size': 12,
'orbital_period': 7.155,
'orbital_radius': 15.0,
'inclination': 0.21
},
'Callisto': {
'color': 'darkgray',
'size': 11,
'orbital_period': 16.689,
'orbital_radius': 26.4,
'inclination': 0.51
}
}
},
'Saturn': {
'color': 'gold',
'size': 55,
'orbital_period': 29.46,
'orbital_radius': 24,
'inclination': 2.5,
'moons': {
'Mimas': {
'color': 'gray',
'size': 3,
'orbital_period': 0.942,
'orbital_radius': 3.08,
'inclination': 1.53
},
'Enceladus': {
'color': 'white',
'size': 4,
'orbital_period': 1.370,
'orbital_radius': 3.95,
'inclination': 0.00
},
'Tethys': {
'color': 'gray',
'size': 5,
'orbital_period': 1.888,
'orbital_radius': 4.89,
'inclination': 1.09
},
'Dione': {
'color': 'lightgray',
'size': 5,
'orbital_period': 2.737,
'orbital_radius': 6.26,
'inclination': 0.02
},
'Rhea': {
'color': 'lightgray',
'size': 6,
'orbital_period': 4.518,
'orbital_radius': 8.74,
'inclination': 0.35
},
'Titan': {
'color': 'orange',
'size': 12,
'orbital_period': 15.945,
'orbital_radius': 20.27,
'inclination': 0.33
},
'Iapetus': {
'color': 'gray',
'size': 6,
'orbital_period': 79.321,
'orbital_radius': 59.02,
'inclination': 15.47
}
}
},
'Uranus': {
'color': 'lightblue',
'size': 45,
'orbital_period': 84.01,
'orbital_radius': 48,
'inclination': 0.8,
'moons': {
'Miranda': {
'color': 'gray',
'size': 3,
'orbital_period': 1.413,
'orbital_radius': 5.08,
'inclination': 4.34
},
'Ariel': {
'color': 'lightgray',
'size': 4,
'orbital_period': 2.520,
'orbital_radius': 7.27,
'inclination': 0.04
},
'Umbriel': {
'color': 'darkgray',
'size': 4,
'orbital_period': 4.144,
'orbital_radius': 10.12,
'inclination': 0.13
},
'Titania': {
'color': 'gray',
'size': 5,
'orbital_period': 8.706,
'orbital_radius': 16.84,
'inclination': 0.08
},
'Oberon': {
'color': 'gray',
'size': 5,
'orbital_period': 13.463,
'orbital_radius': 22.75,
'inclination': 0.07
}
}
},
'Neptune': {
'color': 'blue',
'size': 45,
'orbital_period': 164.79,
'orbital_radius': 75,
'inclination': 1.8,
'moons': {
'Naiad': {
'color': 'gray',
'size': 2,
'orbital_period': 0.294,
'orbital_radius': 3.18,
'inclination': 4.75
},
'Thalassa': {
'color': 'gray',
'size': 2,
'orbital_period': 0.311,
'orbital_radius': 3.32,
'inclination': 0.21
},
'Despina': {
'color': 'gray',
'size': 2,
'orbital_period': 0.335,
'orbital_radius': 3.51,
'inclination': 0.07
},
'Galatea': {
'color': 'gray',
'size': 3,
'orbital_period': 0.429,
'orbital_radius': 4.18,
'inclination': 0.05
},
'Larissa': {
'color': 'gray',
'size': 3,
'orbital_period': 0.555,
'orbital_radius': 4.97,
'inclination': 0.20
},
'Proteus': {
'color': 'darkgray',
'size': 4,
'orbital_period': 1.122,
'orbital_radius': 7.96,
'inclination': 0.08
},
'Triton': {
'color': 'pink',
'size': 8,
'orbital_period': 5.877,
'orbital_radius': 14.33,
'inclination': 156.885 # Retrograde orbit
},
'Nereid': {
'color': 'gray',
'size': 3,
'orbital_period': 360.13,
'orbital_radius': 222.65,
'inclination': 7.23
}
}
},
'Pluto': {
'color': 'brown',
'size': 15,
'orbital_period': 248.09,
'orbital_radius': 79,
'inclination': 17.16,
'moons': {
'Charon': {
'color': 'gray',
'size': 7,
'orbital_period': 6.387,
'orbital_radius': 17.53,
'inclination': 0.001
},
'Nix': {
'color': 'gray',
'size': 2,
'orbital_period': 24.856,
'orbital_radius': 48.69,
'inclination': 0.133
},
'Hydra': {
'color': 'gray',
'size': 2,
'orbital_period': 38.206,
'orbital_radius': 64.74,
'inclination': 0.242
},
'Kerberos': {
'color': 'gray',
'size': 1,
'orbital_period': 32.168,
'orbital_radius': 57.78,
'inclination': 0.389
},
'Styx': {
'color': 'gray',
'size': 1,
'orbital_period': 20.162,
'orbital_radius': 42.65,
'inclination': 0.809
}
}
}
}
}
class SolarSystemAnimation3D:
def __init__(self, style='default', elev=20, azim=45):
# Set up the 3D figure
plt.style.use(style)
self.fig = plt.figure(figsize=(16, 9))
self.ax = self.fig.add_subplot(111, projection='3d')
self.elev = elev
self.azim = azim
# Extract settings from the new Config structure
self.settings = Config.SETTINGS
self.frames = self.settings['frames']
self.camera_distance = self.settings['camera_distance']
self.min_camera_distance = self.settings['min_camera_distance']
self.max_camera_distance = self.settings['max_camera_distance']
self.zoom_speed = self.settings['zoom_speed']
self.base_speed = self.settings['base_speed']
# Extract planet data
self.planets = self.settings['planets']
# Extract asteroid counts
asteroid_counts = self.settings['asteroid_counts']
self.num_asteroids = asteroid_counts['belt']
self.num_hildas = asteroid_counts['hildas']
self.num_trojans = asteroid_counts['trojans']
self.num_kuiper = asteroid_counts['kuiper']
self.num_inner_oort = asteroid_counts['inner_oort']
self.num_outer_oort = asteroid_counts['outer_oort']
# Initialize positions
self.init_positions()
def init_positions(self):
# Initialize planet positions
self.planet_positions = {planet: {'x': [], 'y': [], 'z': []} for planet in self.planets.keys()}
self.moon_positions = {planet: {moon: {'x': [], 'y': [], 'z': []}
for moon in properties['moons'].keys()}
for planet, properties in self.planets.items()}
# Initialize main belt asteroids
self.belt_angles = np.random.uniform(0, 2*np.pi, self.num_asteroids)
self.belt_radii = np.random.uniform(5, 11, self.num_asteroids)
self.belt_eccentricity = np.random.uniform(0.1, 0.3, self.num_asteroids)
self.belt_inclination = np.random.uniform(-20, 20, self.num_asteroids)
self.belt_phase = np.random.uniform(0, 2*np.pi, self.num_asteroids)
self.belt_ascending_nodes = np.random.uniform(0, 2*np.pi, self.num_asteroids)
# Initialize Hildas
self.hilda_angles = []
for angle in [0, 2*np.pi/3, 4*np.pi/3]:
cluster_angles = np.random.normal(angle, 0.5, self.num_hildas//3)
self.hilda_angles.extend(cluster_angles)
self.hilda_angles = np.array(self.hilda_angles)
jupiter_radius = self.planets['Jupiter']['orbital_radius']
self.hilda_radii = np.random.normal(jupiter_radius * 0.8, 0.8, len(self.hilda_angles))
self.hilda_inclination = np.random.uniform(-10, 10, len(self.hilda_angles))
self.hilda_phase = np.random.uniform(0, 2*np.pi, len(self.hilda_angles))
# Initialize Trojans
self.trojan_angles1 = np.random.normal(np.pi/3, 0.4, self.num_trojans)
self.trojan_angles2 = np.random.normal(5*np.pi/3, 0.4, self.num_trojans)
self.trojan_radii = np.random.normal(jupiter_radius, 1.0, self.num_trojans)
self.trojan_inclination = np.random.uniform(-15, 15, self.num_trojans)
self.trojan_phase = np.random.uniform(0, 2*np.pi, self.num_trojans)
# Initialize Kuiper Belt, Inner Oort Cloud, and Outer Oort Cloud positions
# [Previous initialization code remains the same]
self.kuiper_angles = np.random.uniform(0, 2*np.pi, self.num_kuiper)
self.kuiper_radii = np.random.uniform(80, 120, self.num_kuiper)
self.kuiper_inclination = np.random.uniform(-30, 30, self.num_kuiper)
self.kuiper_eccentricity = np.random.uniform(0.1, 0.3, self.num_kuiper)
self.kuiper_ascending_nodes = np.random.uniform(0, 2*np.pi, self.num_kuiper)
# Initialize Inner Oort Cloud (Hills Cloud)
self.inner_oort_phi = np.random.uniform(0, 2*np.pi, self.num_inner_oort)
self.inner_oort_theta = np.random.normal(np.pi/2, 0.5, self.num_inner_oort)
self.inner_oort_radii = np.random.power(0.7, self.num_inner_oort) * 18000 + 2000
self.inner_oort_rotation = np.random.uniform(0, 2*np.pi, self.num_inner_oort)
# Initialize Outer Oort Cloud
self.outer_oort_phi = np.random.uniform(0, 2*np.pi, self.num_outer_oort)
self.outer_oort_theta = np.arccos(2*np.random.uniform(0, 1, self.num_outer_oort) - 1)
self.outer_oort_radii = np.random.power(0.5, self.num_outer_oort) * 80000 + 20000
self.outer_oort_rotation = np.random.uniform(0, 2*np.pi, self.num_outer_oort)
def update(self, frame):
print(f"{frame}")
self.ax.clear()
# Calculate camera distance with smooth zoom
self.camera_distance = self.max_camera_distance - (self.max_camera_distance - self.min_camera_distance) * (1 - np.exp(-self.zoom_speed * frame))
speed_scale = max(0.1, (self.camera_distance / self.max_camera_distance) ** 0.3)
current_speed = self.base_speed * speed_scale
# Get Jupiter's planet angle for trojans/hildas
jupiter_planet_angle = None
for planet, properties in self.planets.items():
if planet == 'Jupiter':
angular_velocity = 2 * np.pi / properties['orbital_period']
jupiter_planet_angle = -(current_speed * frame * angular_velocity)
break
# Update planet positions
for planet, properties in self.planets.items():
angular_velocity = 2 * np.pi / properties['orbital_period']
planet_angle = -(current_speed * frame * angular_velocity)
planet_x, planet_y, planet_z = self.calculate_3d_position(
properties['orbital_radius'],
planet_angle,
properties['inclination']
)
self.planet_positions[planet]['x'] = planet_x
self.planet_positions[planet]['y'] = planet_y
self.planet_positions[planet]['z'] = planet_z
# Update moon positions
for moon, moon_props in properties['moons'].items():
moon_period = moon_props['orbital_period'] / (365.25 * properties['orbital_period'])
moon_angular_velocity = 2 * np.pi / moon_period
moon_angle = -(current_speed * frame * moon_angular_velocity)
moon_local_x, moon_local_y, moon_local_z = self.calculate_3d_position(
moon_props['orbital_radius'] * 0.01,
moon_angle,
moon_props['inclination']
)
self.moon_positions[planet][moon]['x'] = planet_x + moon_local_x
self.moon_positions[planet][moon]['y'] = planet_y + moon_local_y
self.moon_positions[planet][moon]['z'] = planet_z + moon_local_z
# Draw orbital paths
theta = np.linspace(0, 2*np.pi, 100)
for planet, properties in self.planets.items():
x, y, z = self.calculate_3d_position(
properties['orbital_radius'],
theta,
properties['inclination']
)
opacity, _ = self.calculate_visibility((x, y, z), self.camera_distance)
self.ax.plot(x, y, z, 'b-', alpha=opacity.mean() * 0.3)
# Draw moon orbits
planet_pos = self.planet_positions[planet]
for moon, moon_props in properties['moons'].items():
moon_x, moon_y, moon_z = self.calculate_3d_position(
moon_props['orbital_radius'] * 0.01,
theta,
moon_props['inclination']
)
moon_orbit_x = planet_pos['x'] + moon_x
moon_orbit_y = planet_pos['y'] + moon_y
moon_orbit_z = planet_pos['z'] + moon_z
moon_opacity, _ = self.calculate_visibility(
(moon_orbit_x, moon_orbit_y, moon_orbit_z),
self.camera_distance
)
self.ax.plot(moon_orbit_x, moon_orbit_y, moon_orbit_z,
'gray', alpha=moon_opacity.mean() * 0.2, linewidth=0.5)
# Calculate asteroid belt positions using Kepler's Third Law
belt_orbital_period = np.sqrt(self.belt_radii ** 3)
belt_velocities = 2 * np.pi / belt_orbital_period
belt_angles_update = self.belt_angles - current_speed * frame * belt_velocities
belt_radii_update = self.belt_radii * (1 + self.belt_eccentricity * np.cos(belt_angles_update))
belt_x, belt_y, belt_z = self.calculate_3d_position(
belt_radii_update,
belt_angles_update,
self.belt_inclination,
self.belt_ascending_nodes
)
# Hildas at 2:3 resonance with Jupiter
hilda_angles_update = self.hilda_angles + jupiter_planet_angle * (2/3)
hilda_x, hilda_y, hilda_z = self.calculate_3d_position(
self.hilda_radii,
hilda_angles_update,
self.hilda_inclination
)
# Trojans at Jupiter's L4 and L5 points
trojan_x1, trojan_y1, trojan_z1 = self.calculate_3d_position(
self.trojan_radii,
self.trojan_angles1 + jupiter_planet_angle,
self.trojan_inclination
)
trojan_x2, trojan_y2, trojan_z2 = self.calculate_3d_position(
self.trojan_radii,
self.trojan_angles2 + jupiter_planet_angle,
self.trojan_inclination
)
# Kuiper Belt with proper Keplerian motion
kuiper_orbital_period = np.sqrt(self.kuiper_radii ** 3)
kuiper_velocities = 2 * np.pi / kuiper_orbital_period
kuiper_angles_update = self.kuiper_angles - current_speed * frame * kuiper_velocities
kuiper_radii_update = self.kuiper_radii * (1 + self.kuiper_eccentricity * np.cos(kuiper_angles_update))
kuiper_x, kuiper_y, kuiper_z = self.calculate_3d_position(
kuiper_radii_update,
kuiper_angles_update,
self.kuiper_inclination,
self.kuiper_ascending_nodes
)
# Calculate visibilities
belt_opacity, belt_size = self.calculate_visibility((belt_x, belt_y, belt_z), self.camera_distance)
hilda_opacity, hilda_size = self.calculate_visibility((hilda_x, hilda_y, hilda_z), self.camera_distance)
trojan_opacity1, trojan_size1 = self.calculate_visibility((trojan_x1, trojan_y1, trojan_z1), self.camera_distance)
trojan_opacity2, trojan_size2 = self.calculate_visibility((trojan_x2, trojan_y2, trojan_z2), self.camera_distance)
kuiper_opacity, kuiper_size = self.calculate_visibility((kuiper_x, kuiper_y, kuiper_z), self.camera_distance)
# Calculate Oort Cloud positions with much slower motion
inner_orbital_period = np.sqrt(self.inner_oort_radii ** 3)
inner_velocities = 2 * np.pi / inner_orbital_period
inner_angles = self.inner_oort_rotation - current_speed * frame * inner_velocities * 0.001
inner_x = self.inner_oort_radii * np.sin(self.inner_oort_theta) * np.cos(self.inner_oort_phi + inner_angles)
inner_y = self.inner_oort_radii * np.sin(self.inner_oort_theta) * np.sin(self.inner_oort_phi + inner_angles)
inner_z = self.inner_oort_radii * np.cos(self.inner_oort_theta)
outer_orbital_period = np.sqrt(self.outer_oort_radii ** 3)
outer_velocities = 2 * np.pi / outer_orbital_period
outer_angles = self.outer_oort_rotation - current_speed * frame * outer_velocities * 0.0005
outer_x = self.outer_oort_radii * np.sin(self.outer_oort_theta) * np.cos(self.outer_oort_phi + outer_angles)
outer_y = self.outer_oort_radii * np.sin(self.outer_oort_theta) * np.sin(self.outer_oort_phi + outer_angles)
outer_z = self.outer_oort_radii * np.cos(self.outer_oort_theta)
inner_opacity, inner_size = self.calculate_visibility(
(inner_x, inner_y, inner_z),
self.camera_distance,
max_distance=100000
)
outer_opacity, outer_size = self.calculate_visibility(
(outer_x, outer_y, outer_z),
self.camera_distance,
max_distance=100000
)
# Plot everything
self.ax.scatter([0], [0], [0], c='yellow', s=100) # Sun
# Plot planets and moons
for planet, pos in self.planet_positions.items():
properties = self.planets[planet]
planet_opacity, planet_size = self.calculate_visibility(
(pos['x'], pos['y'], pos['z']),
self.camera_distance
)
self.ax.scatter(pos['x'], pos['y'], pos['z'],
c=properties['color'],
s=properties['size'] * planet_size[0],
alpha=planet_opacity[0])
if planet_opacity[0] > 0.3:
self.ax.text(pos['x'], pos['y'], pos['z'], planet, fontsize=8)
for moon, moon_props in properties['moons'].items():
moon_pos = self.moon_positions[planet][moon]
moon_opacity, moon_size = self.calculate_visibility(
(moon_pos['x'], moon_pos['y'], moon_pos['z']),
self.camera_distance
)
self.ax.scatter(moon_pos['x'], moon_pos['y'], moon_pos['z'],
c=moon_props['color'],
s=moon_props['size'] * moon_size[0],
alpha=moon_opacity[0])
# Plot asteroid populations
self.ax.scatter(belt_x, belt_y, belt_z, c='gray', s=1 * belt_size, alpha=belt_opacity)
self.ax.scatter(hilda_x, hilda_y, hilda_z, c='gray', s=1 * hilda_size, alpha=hilda_opacity)
self.ax.scatter(trojan_x1, trojan_y1, trojan_z1, c='gray', s=1 * trojan_size1, alpha=trojan_opacity1)
self.ax.scatter(trojan_x2, trojan_y2, trojan_z2, c='gray', s=1 * trojan_size2, alpha=trojan_opacity2)
self.ax.scatter(kuiper_x, kuiper_y, kuiper_z, c='gray', s=1 * kuiper_size, alpha=kuiper_opacity)
# Plot Oort Clouds
self.ax.scatter(inner_x, inner_y, inner_z,
c='lightblue', s=0.8 * inner_size, alpha=inner_opacity * 0.4,
label='Hills Cloud')
self.ax.scatter(outer_x, outer_y, outer_z,
c='lightgray', s=0.5 * outer_size, alpha=outer_opacity * 0.3,
label='Outer Oort Cloud')
# Update view limits
max_radius = max(self.outer_oort_radii.max(), self.inner_oort_radii.max())
limit = self.camera_distance * (1 + np.log10(max_radius / self.camera_distance))
self.ax.set_xlim(-limit, limit)
self.ax.set_ylim(-limit, limit)
self.ax.set_zlim(-limit, limit)
self.ax.set_axis_off()
plt.subplots_adjust(left=-.5, bottom=-2, right=1.5, top=3, wspace=None, hspace=None)
self.ax.view_init(elev=self.elev, azim=self.azim)
self.ax.set_title('Complete Solar System Animation', pad=20)
def calculate_oort_positions(self, frame):
"""Calculate positions for both Inner and Outer Oort Cloud objects"""
# Inner Oort Cloud (Hills Cloud) - slightly faster motion
inner_angular_velocity = 0.00002 / np.sqrt(self.inner_oort_radii)
inner_angles = self.inner_oort_rotation + self.base_speed * frame * inner_angular_velocity
inner_x = self.inner_oort_radii * np.sin(self.inner_oort_theta) * np.cos(self.inner_oort_phi + inner_angles)
inner_y = self.inner_oort_radii * np.sin(self.inner_oort_theta) * np.sin(self.inner_oort_phi + inner_angles)
inner_z = self.inner_oort_radii * np.cos(self.inner_oort_theta)
# Outer Oort Cloud - slower motion
outer_angular_velocity = 0.00001 / np.sqrt(self.outer_oort_radii)
outer_angles = self.outer_oort_rotation + self.base_speed * frame * outer_angular_velocity
outer_x = self.outer_oort_radii * np.sin(self.outer_oort_theta) * np.cos(self.outer_oort_phi + outer_angles)
outer_y = self.outer_oort_radii * np.sin(self.outer_oort_theta) * np.sin(self.outer_oort_phi + outer_angles)
outer_z = self.outer_oort_radii * np.cos(self.outer_oort_theta)
return (inner_x, inner_y, inner_z), (outer_x, outer_y, outer_z)
def calculate_3d_position(self, radius, angle, inclination, ascending_node=0):
# Convert inclination to radians
incl_rad = np.radians(inclination)
# Calculate position in orbital plane
# Let sine and cosine handle the periodicity naturally
x_orbit = radius * np.cos(angle)
y_orbit = radius * np.sin(angle)
# Apply inclination and ascending node rotation
x = (x_orbit * np.cos(ascending_node) -
y_orbit * np.cos(incl_rad) * np.sin(ascending_node))
y = (x_orbit * np.sin(ascending_node) +
y_orbit * np.cos(incl_rad) * np.cos(ascending_node))
z = y_orbit * np.sin(incl_rad)
return x, y, z
def calculate_visibility(self, positions, camera_distance, max_distance=50):
"""Calculate opacity based on distance from camera"""
# Calculate camera position that rotates with the view
azim = np.radians(45) # Match the view_init azimuth
elev = np.radians(20) # Match the view_init elevation
x = camera_distance * np.cos(elev) * np.sin(azim)
y = camera_distance * np.cos(elev) * np.cos(azim)
z = camera_distance * np.sin(elev)
camera_pos = np.array([x, y, z])
if isinstance(positions[0], np.ndarray):
points = np.vstack((positions[0], positions[1], positions[2])).T
else:
points = np.array([[positions[0], positions[1], positions[2]]])
distances = np.linalg.norm(points - camera_pos, axis=1)
# Calculate opacity based on distance
max_opacity = 0.8
min_opacity = 0.0
opacity = np.clip(max_opacity * (1 - distances/max_distance), min_opacity, max_opacity)
# Add distance-based size scaling
size_scale = np.clip(1.5 * (1 - distances/max_distance), 0.2, 1.0)
return opacity, size_scale
def animate(self):
anim = FuncAnimation(self.fig, self.update, frames=self.frames, interval=50, blit=False)
plt.show()
def save(self, filename):
anim = FuncAnimation(self.fig, self.update, frames=self.frames, interval=50, blit=False)
self.fig.set_size_inches(16, 9)
self.fig.set_dpi(100)
anim.save(filename, writer=PillowWriter(fps=20))
print(f"Animation saved as {filename}")
def save1080p(self, filename):
"""
Save the animation in 1080p resolution (1920x1080) using H.264 codec
Parameters:
filename (str): The output filename (should end in .mp4 or .mov)
"""
anim = FuncAnimation(self.fig, self.update, frames=self.frames, interval=50, blit=False)
self.fig.set_size_inches(16, 9) # 16:9 aspect ratio
self.fig.set_dpi(120) # 1920/16 = 120 DPI for 1080p
writer = FFMpegWriter(fps=30, codec='h264', bitrate=8000)
anim.save(filename, writer=writer)
print(f"Animation saved as {filename}")
def save4k(self, filename):
anim = FuncAnimation(self.fig, self.update, frames=self.frames, interval=50, blit=False)
self.fig.set_size_inches(16, 9)
self.fig.set_dpi(240)
writer = FFMpegWriter(fps=30, codec='h264')
anim.save(filename, writer=writer)
print(f"Animation saved as {filename}")
styles = {'light': 'default', 'dark': 'dark_background'}
for version, style in styles.items():
# Default 3D Perspective
solar_system = SolarSystemAnimation3D(style=style, elev=20, azim=45)
solar_system.save(os.path.join(OS_PATH, f"output/complete_solar_system_3d_{version}.gif"))
solar_system.save1080p(os.path.join(OS_PATH, f"output/complete_solar_system_3d_{version}_1080p.mp4"))
solar_system.save4k(os.path.join(OS_PATH, f"output/complete_solar_system_3d_{version}_4k.mov"))
#solar_system.animate()
# Top-Down View
solar_system_top_down = SolarSystemAnimation3D(style=style, elev=90, azim=0)
solar_system_top_down.save(os.path.join(OS_PATH, f"output/complete_solar_system_3d_top_down_{version}.gif"))
solar_system_top_down.save1080p(os.path.join(OS_PATH, f"output/complete_solar_system_3d_top_down_{version}_1080p.mp4"))
solar_system_top_down.save4k(os.path.join(OS_PATH, f"output/complete_solar_system_3d_top_down_{version}_4k.mov"))
#solar_system_top_down.animate()