|
1 |
| -name: OpenVINO - Notebooks and Examples Test |
| 1 | +name: OpenVINO - Examples Test |
2 | 2 |
|
3 | 3 | on:
|
4 | 4 | workflow_dispatch:
|
5 | 5 | schedule:
|
6 | 6 | - cron: '14 3 * * 1' # run weekly: every Monday at 3:14
|
7 | 7 | push:
|
8 | 8 | paths:
|
9 |
| - - '.github/workflows/test_openvino_notebooks.yml' |
10 | 9 | - '.github/workflows/test_openvino_examples.yml'
|
11 |
| - - 'notebooks/openvino/*' |
12 | 10 | - 'examples/openvino/*'
|
13 | 11 | pull_request:
|
14 | 12 | paths:
|
15 |
| - - '.github/workflows/test_openvino_notebooks.yml' |
16 | 13 | - '.github/workflows/test_openvino_examples.yml'
|
17 |
| - - 'notebooks/openvino/*' |
18 | 14 | - 'examples/openvino/*'
|
19 | 15 |
|
20 | 16 |
|
|
42 | 38 | run: |
|
43 | 39 | # Install PyTorch CPU to prevent unnecessary downloading/installing of CUDA packages
|
44 | 40 | # ffmpeg, torchaudio and pillow are required for image classification and audio classification pipelines
|
45 |
| - sudo apt-get install ffmpeg |
46 |
| - # pip install torch torchaudio --extra-index-url https://download.pytorch.org/whl/cpu |
47 |
| - pip install ".[tests, openvino]" nbval |
48 |
| - pip install optimum[openvino] nncf torchaudio datasets==2.4.0 |
49 |
| - pip install -r notebooks/openvino/requirements.txt |
| 41 | + pip install optimum[openvino] nncf |
| 42 | + pip install -r examples/openvino/audio-classification/requirements.txt |
50 | 43 | pip install -r examples/openvino/image-classification/requirements.txt
|
51 | 44 | pip install -r examples/openvino/question-answering/requirements.txt
|
52 | 45 | pip install -r examples/openvino/text-classification/requirements.txt
|
|
55 | 48 | - run: lscpu
|
56 | 49 | - run: pip freeze
|
57 | 50 |
|
58 |
| - - name: Test with Pytest |
59 |
| - run: | |
60 |
| - python -m pytest --nbval-lax notebooks/openvino/optimum_openvino_inference.ipynb notebooks/openvino/question_answering_quantization.ipynb |
61 |
| -
|
62 | 51 | - name: Test examples
|
63 | 52 | run: |
|
64 |
| - python examples/openvino/image-classification/run_image_classification.py --model_name_or_path nateraw/vit-base-beans --dataset_name beans --max_train_samples 50 --max_eval_samples 10 --remove_unused_columns False --do_train --do_eval --learning_rate 2e-5 --num_train_epochs 1 --logging_strategy steps --logging_steps 10 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 3 --seed 1337 --output_dir /tmp/beans_outputs/ |
65 |
| - python examples/openvino/question-answering/run_qa.py --model_name_or_path distilbert-base-uncased-distilled-squad --dataset_name squad --do_train --do_eval --max_train_samples 50 --learning_rate 3e-5 --num_train_epochs 1 --max_seq_length 384 --doc_stride 128 --output_dir /tmp/outputs_squad/ --overwrite_output_dir |
66 |
| - TASK_NAME=sst2 && python examples/openvino/text-classification/run_glue.py --model_name_or_path bert-base-uncased --task_name $TASK_NAME --max_train_samples 20 --max_eval_samples 5 --output_dir /tmp/qat-bert-base-ft-$TASK_NAME --overwrite_output_dir --do_train --do_eval --max_seq_length 128 --learning_rate 1e-5 --optim adamw_torch --num_train_epochs 1 --logging_steps 10 --evaluation_strategy steps --eval_steps 5 --save_strategy epoch --seed 42 |
| 53 | + python run_audio_classification.py --model_name_or_path facebook/wav2vec2-base --nncf_compression_config configs/wav2vec2-base-qat.json --dataset_name superb --dataset_config_name ks --max_train_samples 10 --max_eval_samples 2 --output_dir /tmp/qat-wav2vec2-base-ft-keyword-spotting --overwrite_output_dir --remove_unused_columns False --do_train --learning_rate 3e-5 --max_length_seconds 1 --attention_mask False --warmup_ratio 0.1 --num_train_epochs 1 --gradient_accumulation_steps 1 --dataloader_num_workers 1 --logging_strategy steps --logging_steps 1 --evaluation_strategy epoch --save_strategy epoch --load_best_model_at_end False --seed 42 |
| 54 | + TASK_NAME=sst2 && python run_glue.py --model_name_or_path sshleifer/tiny-distilbert-base-cased-distilled-squad --task_name $TASK_NAME --max_train_samples 10 --max_eval_samples 2 --output_dir /tmp/qat-bert-base-ft-$TASK_NAME --overwrite_output_dir --do_train --do_eval --max_seq_length 128 --learning_rate 1e-5 --optim adamw_torch --num_train_epochs 1 --logging_steps 10 --evaluation_strategy steps --eval_steps 5 --save_strategy epoch --seed 42 |
| 55 | + python run_qa.py --model_name_or_path sshleifer/tiny-distilbert-base-cased-distilled-squad --dataset_name squad --do_train --do_eval --max_train_samples 10 --max_eval_samples 2 --learning_rate 3e-5 --num_train_epochs 1 --max_seq_length 384 --doc_stride 128 --output_dir /tmp/outputs_squad/ --overwrite_output_dir |
| 56 | + python run_image_classification.py --model_name_or_path nateraw/vit-base-beans --dataset_name beans --max_train_samples 10 --max_eval_samples 2 --remove_unused_columns False --do_train --learning_rate 2e-5 --num_train_epochs 1 --logging_strategy steps --logging_steps 1 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1 --seed 1337 --output_dir /tmp/beans_outputs/ |
0 commit comments