1
- name : OpenVINO - Examples Test
1
+ name : OpenVINO - Notebooks and Examples Test
2
2
3
3
on :
4
4
workflow_dispatch :
5
5
schedule :
6
6
- cron : ' 14 3 * * 1' # run weekly: every Monday at 3:14
7
7
push :
8
8
paths :
9
+ - ' .github/workflows/test_openvino_notebooks.yml'
9
10
- ' .github/workflows/test_openvino_examples.yml'
11
+ - ' notebooks/openvino/*'
10
12
- ' examples/openvino/*'
11
13
pull_request :
12
14
paths :
15
+ - ' .github/workflows/test_openvino_notebooks.yml'
13
16
- ' .github/workflows/test_openvino_examples.yml'
17
+ - ' notebooks/openvino/*'
14
18
- ' examples/openvino/*'
15
19
16
20
@@ -38,11 +42,11 @@ jobs:
38
42
run : |
39
43
# Install PyTorch CPU to prevent unnecessary downloading/installing of CUDA packages
40
44
# ffmpeg, torchaudio and pillow are required for image classification and audio classification pipelines
41
- # sudo apt-get install ffmpeg
42
- #pip install torch torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
43
- pip install optimum[ openvino] nncf
44
- pip install datasets==2.4.0
45
- # pip install -r examples /openvino/audio-classification /requirements.txt
45
+ sudo apt-get install ffmpeg
46
+ # pip install torch torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
47
+ pip install ".[tests, openvino]" nbval
48
+ pip install optimum[openvino] nncf torchaudio datasets==2.4.0
49
+ pip install -r notebooks /openvino/requirements.txt
46
50
pip install -r examples/openvino/image-classification/requirements.txt
47
51
pip install -r examples/openvino/question-answering/requirements.txt
48
52
pip install -r examples/openvino/text-classification/requirements.txt
@@ -51,14 +55,12 @@ jobs:
51
55
- run : lscpu
52
56
- run : pip freeze
53
57
58
+ - name : Test with Pytest
59
+ run : |
60
+ python -m pytest --nbval-lax notebooks/openvino/optimum_openvino_inference.ipynb notebooks/openvino/question_answering_quantization.ipynb
61
+
54
62
- name : Test examples
55
63
run : |
56
- #python examples/openvino/audio-classification/run_audio_classification.py --model_name_or_path facebook/wav2vec2-base --nncf_compression_config examples/openvino/audio-classification/configs/wav2vec2-base-qat.json --dataset_name superb --dataset_config_name ks --max_train_samples 50 --max_eval_samples 10 --output_dir /tmp/qat-wav2vec2-base-ft-keyword-spotting --overwrite_output_dir --remove_unused_columns False --do_train --do_eval --learning_rate 3e-5 --max_length_seconds 1 --attention_mask False --warmup_ratio 0.1 --num_train_epochs 5 --gradient_accumulation_steps 4 --dataloader_num_workers 4 --logging_strategy steps --logging_steps 10 --evaluation_strategy epoch --save_strategy epoch --load_best_model_at_end True --metric_for_best_model accuracy --save_total_limit 3 --seed 42
57
64
python examples/openvino/image-classification/run_image_classification.py --model_name_or_path nateraw/vit-base-beans --dataset_name beans --max_train_samples 50 --max_eval_samples 10 --remove_unused_columns False --do_train --do_eval --learning_rate 2e-5 --num_train_epochs 1 --logging_strategy steps --logging_steps 10 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 3 --seed 1337 --output_dir /tmp/beans_outputs/
58
65
python examples/openvino/question-answering/run_qa.py --model_name_or_path distilbert-base-uncased-distilled-squad --dataset_name squad --do_train --do_eval --max_train_samples 50 --learning_rate 3e-5 --num_train_epochs 1 --max_seq_length 384 --doc_stride 128 --output_dir /tmp/outputs_squad/ --overwrite_output_dir
59
66
TASK_NAME=sst2 && python examples/openvino/text-classification/run_glue.py --model_name_or_path bert-base-uncased --task_name $TASK_NAME --max_train_samples 20 --max_eval_samples 5 --output_dir /tmp/qat-bert-base-ft-$TASK_NAME --overwrite_output_dir --do_train --do_eval --max_seq_length 128 --learning_rate 1e-5 --optim adamw_torch --num_train_epochs 1 --logging_steps 10 --evaluation_strategy steps --eval_steps 5 --save_strategy epoch --seed 42
60
-
61
- #pip install -r examples/openvino/stable-diffusion/requirements.txt
62
- #python examples/openvino/stable-diffusion/train_text_to_image_qat.py --ema_device="cpu" --use_kd --model_id="svjack/Stable-Diffusion-Pokemon-en" --max_train_samples 20 --center_crop --random_flip --dataloader_num_workers=2 --dataset_name="lambdalabs/pokemon-blip-captions" --max_train_steps=1 --output_dir=sd-quantized-pokemon
63
-
64
-
0 commit comments