-
Quick summary This paper analyses the Big Mart Sales Prediction, in an effort to create an effective sales predictor that can be used for business decision-making purposes
-
Problem Statement The aim is to build a predictive model and find out the sales of each product at a particular store.
-
Using this model, BigMart will try to understand the properties of products and stores which play a key role in increasing sales
- pip install requirements.txt:
pip install -r requirements.txt
- run
python sales_prediction.py
with arguments found in Command Line Arguments section below.
Example:
python sales_prediction.py \
--input_Test=resources/Test.csv \
--input_Train=resources/Train.csv \
--output=output/Lasso Regressor.csv\
--output=output/Linear Regression.csv\
--output=output/Random Forest Regressor.csv
--input_Test
: The input Oyster LinkIndex file . Must be a full path to a tsv file. For example,--input_OysterLinkIndex=/Users/mohammedmutaharshaik/Desktop/UALR /Courses+Assignments/3 rd semester /ML/ML Main projects /resources/Test.csv
.--input_Train
: The input DWM LinkIndex file. Must be a full path to a csv file. For example,--input_DWMLinkIndex=/Users/mohammedmutaharshaik/Desktop/UALR /Courses+Assignments/3 rd semester /ML/ML Main projects /resources/Train.csv
.--output
: The output file. Must be a full path to a csv file. For example,--output=/Users/mohammedmutaharshaik/Desktop/UALR /Courses+Assignments/3 rd semester /ML/ML Main projects /Output
- Writing tests
- Code review
- Other guidelines
- Repo owner or admin
- Other community or team contact