Skip to content

China-ChallengeHub/DomainAdaption4DependencyParsing

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DomainAdaption4DependencyParsing

Pytorch implementations of model-centric and data-centric domain-adaption techniques for dependency parsing.

Datasets

NLPCC-2019依存句法分析领域移植评测任务数据集

源域:平衡语料(BC)

目标域:

  • 淘宝产品博客(PB)
  • 淘宝产品评论(PC)
  • 网络小说《诛仙》(ZX)

Run

nohup python train_ts.py --cuda 1 -lr 1e-3 --bert_lr 2e-5 --bert_layer 4 --batch_size 32 --src_type BC --tgt_type ZX --d_model 768 --arc_size 640 --label_size 128 &> zx_.log &

nohup python train_ts.py --cuda 2 -lr 1e-3 --bert_lr 2e-5 --bert_layer 4 --batch_size 32 --src_type BC --tgt_type PC --d_model 768 --arc_size 640 --label_size 128 &> pc_.log &

nohup python train_ts.py --cuda 3 -lr 1e-3 --bert_lr 2e-5 --bert_layer 4 --batch_size 32 --src_type BC --tgt_type PB --d_model 768 --arc_size 640 --label_size 128 &> pb_.log &

Core Methods

  • Domain-Adaptive Pretraining:MLM + Finetuning
  • Teacher-Student Learning:pretrained teacher + to-be-trained student
  • Multi-task Tri-training:shared BERT + separated Biaffines

Others

  • Full Finetuning
  • DistanceNet:Dual BERT + domain distance metrics
  • Domain Adversarial Training:GRL + domain classification
  • VAE Reconstruction:autoencoder

About

UDA for dependency parsing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%