-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDownscale.R
2466 lines (2229 loc) · 132 KB
/
Downscale.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
library(ncdf4)
library(raster)
library(qmap)
library(akima)
nc.dir <- dir("/media/zizroc/Extra Drive 1/Data/NCEP_Reanalysis_Surface_Flux/2mTemp/", full.names=TRUE)
air2mtemp <- list()
for(i in 1:58){
nc <- nc_open(nc.dir[i])
dname <- "air"
lon <- ncvar_get(nc, "lon")
nlon <- dim(lon)
lat <- ncvar_get(nc, "lat")
nlat <- dim(lat)
t <- ncvar_get(nc, "time")
tunits <- ncatt_get(nc, "time", "units")
nt <- dim(t)
#ts.array <- ncvar_get(nc, dname, start = c(1, 1, k*72999), count = c(dim(lon), dim(lat), 200*365)) #this file is enormous (e.g., reset memory.size)
ts.array <- ncvar_get(nc, dname) #this file is enormous (e.g., reset memory.size)
dlname <- ncatt_get(nc ,dname, "long_name")
dunits <- ncatt_get(nc, dname, "units")
fillvalue <- ncatt_get(nc, dname, "_FillValue")
nc_close(nc)
rm(nc)
gc()
temp.r <- list()
for(j in 1:nt){
tmp <- raster(t(ts.array[130:138, 24:30, j]))
extent(tmp) <- c(lon[130], lon[138], lat[30], lat[24])
temp.r[[j]] <- tmp
}
# if(i==1){Tmp <- temp.r}
# if(i >1){Tmp <- stack(Tmp, temp.r)}
air2mtemp[[i+1947]] <- stack(temp.r)
rm(ts.array, temp.r)
print(i)
}
save(air2mtemp, file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTemp_1948to2016.Rdata")
##
#Maximum temperature
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.002.cam.h1.TREFHTMX.18500101-20051231.nc")
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.003.cam.h1.TREFHTMX.18500101-20051231.nc")
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.004.cam.h1.TREFHTMX.18500101-20051231.nc")
tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.005.cam.h1.TREFHTMX.18500101-20051231.nc")
dname <- "TREFHTMX"
#Variables
lon <- ncvar_get(tmp.nc, "lon")
nlon <- dim(lon)
lat <- ncvar_get(tmp.nc, "lat")
nlat <- dim(lat)
dat <- ncvar_get(tmp.nc, "date") #current date (YYYMMDD)
ndat <- dim(dat)
t <- ncvar_get(tmp.nc, "time")
tunits <- ncatt_get(tmp.nc, "time", "units")
nt <- dim(t)
#k = 1/72999 # for start at t=1
#k = 1 #for start at t=200
#ts.array <- ncvar_get(tmp.nc, dname, start = c(1, 1, k*72999), count = c(dim(lon), dim(lat), 200*365)) #this file is enormous (e.g., reset memory.size)
ts.array <- ncvar_get(tmp.nc, dname) #this file is enormous (e.g., reset memory.size)
dlname <- ncatt_get(tmp.nc ,dname, "long_name")
dunits <- ncatt_get(tmp.nc, dname, "units")
fillvalue <- ncatt_get(tmp.nc, dname, "_FillValue")
nc_close(tmp.nc)
rm(tmp.nc)
gc()
tmax.r <- list()
nt=56940 #1850 to 2005 CE
for(i in 1:nt){
tmp <- raster(t(ts.array[99:102, 71:67, i]))
extent(tmp) <- c(lon[99], lon[102], lat[67], lat[71])
tmax.r[[i]] <- tmp
}
rm(ts.array)
gc()
TREFHTMX.1850to2005.dailyRast <- list()
n=156
#n=200
for(i in 1:n){
index <- seq(i+364*(i-1), i+364*(i-1)+364, 1)
TREFHTMX.1850to2005.dailyRast[[i+1849]] <- tmax.r[index]
}
#save(tmax.r, file="/media/zizroc/Extra Drive 1/Data/R environments/tmax_for_scaling.Rdata")
rm(tmax.r)
#Saves a list of daily GCM values
# save(TREFHTMX.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em002.Rdata")
# save(TREFHTMX.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em003.Rdata")
# save(TREFHTMX.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em004.Rdata")
save(TREFHTMX.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em005.Rdata")
##
#Minimum temperature
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.002.cam.h1.TREFHTMN.18500101-20051231.nc")
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.003.cam.h1.TREFHTMN.18500101-20051231.nc")
# tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.004.cam.h1.TREFHTMN.18500101-20051231.nc")
tmp.nc <- nc_open("/media/zizroc/Extra Drive 1/Data/CESM/daily/b.e11.BLMTRC5CN.f19_g16.005.cam.h1.TREFHTMN.18500101-20051231.nc")
dname <- "TREFHTMN"
#Variables
lon <- ncvar_get(tmp.nc, "lon")
nlon <- dim(lon)
lat <- ncvar_get(tmp.nc, "lat")
nlat <- dim(lat)
dat <- ncvar_get(tmp.nc, "date") #current date (YYYMMDD)
ndat <- dim(dat)
t <- ncvar_get(tmp.nc, "time")
tunits <- ncatt_get(tmp.nc, "time", "units")
nt <- dim(t)
#k = 1/72999 # for start at t=1
#k = 1 #for start at t=200
#ts.array <- ncvar_get(tmp.nc, dname, start = c(1, 1, k*72999), count = c(dim(lon), dim(lat), 200*365)) #this file is enormous (e.g., reset memory.size)
ts.array <- ncvar_get(tmp.nc, dname) #this file is enormous (e.g., reset memory.size)
dlname <- ncatt_get(tmp.nc ,dname, "long_name")
dunits <- ncatt_get(tmp.nc, dname, "units")
fillvalue <- ncatt_get(tmp.nc, dname, "_FillValue")
nc_close(tmp.nc)
rm(tmp.nc)
gc()
tmin.r <- list()
nt=56940 #1850 to 2005 CE
for(i in 1:nt){
tmp <- raster(t(ts.array[99:102, 71:67, i]))
extent(tmp) <- c(lon[99], lon[102], lat[67], lat[71])
tmin.r[[i]] <- tmp
}
rm(ts.array)
gc()
TREFHTMN.1850to2005.dailyRast <- list()
n=156
#n=200
for(i in 1:n){
index <- seq(i+364*(i-1), i+364*(i-1)+364, 1)
TREFHTMN.1850to2005.dailyRast[[i+1849]] <- tmin.r[index]
}
rm(tmin.r, dname, index, n, nt, dlname, dunits, fillvalue, i, dat, ndat, nlat, nlon, t, tunits, tmp)
#Saves a list of daily GCM values
# save(TREFHTMN.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em002.Rdata")
# save(TREFHTMN.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em003.Rdata")
# save(TREFHTMN.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em004.Rdata")
save(TREFHTMN.1850to2005.dailyRast, file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em005.Rdata")
gc()
###
#This block loads daily rasters for maximum and minimum reference height temperature from the GCM.
#Load the correct ensemble member.
#CESM ensemble member 002
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em002.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em002.Rdata") #TREFHTMN.1850to2005.dailyRast
#CESM ensemble member 003
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em003.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em003.Rdata") #TREFHTMN.1850to2005.dailyRast
#CESM ensemble member 004
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em004.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em004.Rdata") #TREFHTMN.1850to2005.dailyRast
#CESM ensemble member 005
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em005.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em005.Rdata") #TREFHTMN.1850to2005.dailyRast
###
###
#This block reads in Reanalysis 2 data for bias-correction.
load(file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTemp_1948to2016.Rdata") #air2mtemp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/tmax_for_scaling.Rdata") #tmax.r
gcm.ext <- extent(tmax.r[[1]])
cal.ext <- extent(air2mtemp[[1948]][[1]])
air2mtemp.max <- list()
air2mtemp.min <- list()
air2mtemp.ave <- list()
for(i in 1:58){
tmp.max <- list()
tmp.min <- list()
tmp.ave <- list()
for(j in 1:365){
index <- seq(j+3*(j-1), j+3*(j-1)+3, 1)
tmp.max[[j]] <- max(air2mtemp[[i+1947]][[index]])
tmp.min[[j]] <- min(air2mtemp[[i+1947]][[index]])
tmp.ave[[j]] <- mean(air2mtemp[[i+1947]][[index]])
}
air2mtemp.max[[i+1947]] <- tmp.max
air2mtemp.min[[i+1947]] <- tmp.min
air2mtemp.ave[[i+1947]] <- tmp.ave
rm(tmp.max, tmp.min, tmp.ave)
print(i)
}
rm(air2mtemp, index, i, cal.ext)
save(air2mtemp.max, file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempMax.Rdata")
save(air2mtemp.min, file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempMin.Rdata")
save(air2mtemp.ave, file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempAve.Rdata")
gc()
load(file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempMax.Rdata")
load(file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempMin.Rdata")
load(file="/media/zizroc/Extra Drive 1/Data/R environments/air2mTempAve.Rdata")
cal.tmax <- list()
cal.tmin <- list()
cal.tave <- list()
for(i in 1:58){ #Calibration set is over 1948 to 2005 period
for(j in 1:365){
tmp1.max <- air2mtemp.max[[i+1947]][[j]]
tmp1.min <- air2mtemp.min[[i+1947]][[j]]
tmp1.ave <- air2mtemp.ave[[i+1947]][[j]]
tmp2.max <- resample(tmp1.max, TREFHTMX.1850to2005.dailyRast[[i+1849+98]][[j]], method="bilinear")
tmp2.min <- resample(tmp1.min, TREFHTMX.1850to2005.dailyRast[[i+1849+98]][[j]], method="bilinear")
tmp2.ave <- resample(tmp1.ave, TREFHTMX.1850to2005.dailyRast[[i+1849+98]][[j]], method="bilinear")
if(j==1){
tmp3.max <- tmp2.max
tmp3.min <- tmp2.min
tmp3.ave <- tmp2.ave
}
if(j>1) {
tmp3.max <- stack(tmp3.max, tmp2.max)
tmp3.min <- stack(tmp3.min, tmp2.min)
tmp3.ave <- stack(tmp3.ave, tmp2.ave)
}
rm(tmp1.max, tmp1.min, tmp1.ave, tmp2.max, tmp2.min, tmp2.ave)
}
cal.tmax[[i+1947]] <- tmp3.max
cal.tmin[[i+1947]] <- tmp3.min
cal.tave[[i+1947]] <- tmp3.ave
rm(tmp3.max, tmp3.min, tmp3.ave)
print(paste("Calibration data rectified to GCM-scale, for year", i+1947, sep=" "))
}
save(cal.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/calTmax.Rdata")
save(cal.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/calTmin.Rdata")
save(cal.tave, file="/media/zizroc/Extra Drive 1/Data/R environments/calTave.Rdata")
rm(air2mtemp.max, air2mtemp.min, air2mtemp.ave)
gc()
###
###
#Block loads Reanalysis 2 data for BC.
load(file="/media/zizroc/Extra Drive 1/Data/R environments/calTmax.Rdata") #cal.tmax
load(file="/media/zizroc/Extra Drive 1/Data/R environments/calTmin.Rdata") #cal.tmin
load(file="/media/zizroc/Extra Drive 1/Data/R environments/calTave.Rdata") #cal.tave
###
###
#Calibration Block
#This makes vectorized GCM and GCM-upscaled Reanalysis 2 data for the quantile mapping algorithm.
# cal.Temp.max <- list()
# cal.Temp.min <- list()
# cal.Temp.ave <- list()
# for(j in 1:58){
# tmp.max <- list()
# tmp.min <- list()
# tmp.ave <- list()
# for(i in 1:365){
# # index <- seq(i+3*(i-1), i+3*(i-1)+3, 1)
# tmp.max[[i]] <- max(cal.Temp[[j+1947]][[i]])
# tmp.min[[i]] <- min(cal.Temp[[j+1947]][[i]])
# tmp.ave[[i]] <- mean(cal.Temp[[j+1947]][[i]])
# }
# cal.Temp.max[[j+1947]] <- tmp.max
# cal.Temp.min[[j+1947]] <- tmp.min
# cal.Temp.ave[[j+1947]] <- tmp.ave
# rm(tmp.max, tmp.min, tmp.ave)
# print(j)
# }
gcm.tmax.bias <- list()
gcm.tmin.bias <- list()
cal.tmax.bias <- list()
cal.tmin.bias <- list()
cal.tave.bias <- list()
for(i in 1:365){
gcm.tmax.m <- matrix(nrow=58, ncol=20)
gcm.tmin.m <- matrix(nrow=58, ncol=20)
cal.tmax.m <- matrix(nrow=58, ncol=20)
cal.tmin.m <- matrix(nrow=58, ncol=20)
cal.tave.m <- matrix(nrow=58, ncol=20)
for(j in 1:58){
gcm.tmax.tmp <- TREFHTMX.1850to2005.dailyRast[[j+1849+98]][[i]]
gcm.tmin.tmp <- TREFHTMN.1850to2005.dailyRast[[j+1849+98]][[i]]
cal.tmax.tmp <- cal.tmax[[j+1947]][[i]]
cal.tmin.tmp <- cal.tmin[[j+1947]][[i]]
cal.tave.tmp <- cal.tave[[j+1947]][[i]]
gcm.tmax.m[j,] <- as.vector(gcm.tmax.tmp)
gcm.tmin.m[j,] <- as.vector(gcm.tmin.tmp)
cal.tmax.m[j,] <- as.vector(cal.tmax.tmp)
cal.tmin.m[j,] <- as.vector(cal.tmin.tmp)
cal.tave.m[j,] <- as.vector(cal.tave.tmp)
}
gcm.tmax.bias[[i]] <- gcm.tmax.m
gcm.tmin.bias[[i]] <- gcm.tmin.m
cal.tmax.bias[[i]] <- cal.tmax.m
cal.tmin.bias[[i]] <- cal.tmin.m
cal.tave.bias[[i]] <- cal.tave.m
rm(gcm.tmax.tmp, gcm.tmin.tmp, cal.tmax.tmp, cal.tmin.tmp, cal.tave.tmp, gcm.tmax.m, gcm.tmin.m, cal.tmax.m, cal.tmin.m, cal.tave.m)
print(paste("GCM and calib bias data for day", i, sep=" "))
}
# save(cal.tmax.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tmax_1948to2005.Rdata")
# save(cal.tmin.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tmin_1948to2005.Rdata")
# save(cal.tave.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tave_1948to2005.Rdata")
# #Ensemble member 002
# save(gcm.tmax.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em002.Rdata")
# save(gcm.tmin.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em002.Rdata")
# #Ensemble member 003
# save(gcm.tmax.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em003.Rdata")
# save(gcm.tmin.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em003.Rdata")
# #Ensemble member 004
# save(gcm.tmax.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em004.Rdata")
# save(gcm.tmin.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em004.Rdata")
#Ensemble member 005
save(gcm.tmax.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em005.Rdata")
save(gcm.tmin.bias, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em005.Rdata")
gc()
#end calibration block
###
###
#Loads vectorized GCM and GCM-upscaled Reanalysis 2 data for quantile mapping algorithm.
load(file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tmax_1948to2005.Rdata")
load(file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tmin_1948to2005.Rdata")
load(file="/media/zizroc/Extra Drive 1/Data/R environments/CALIB_Tave_1948to2005.Rdata")
# #Ensemble member 002
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005.Rdata")
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005.Rdata")
# #Ensemble member 003
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em003.Rdata")
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em003.Rdata")
# #Ensemble member 004
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em004.Rdata")
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em004.Rdata")
#Ensemble member 005
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1948to2005_em005.Rdata")
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1948to2005_em005.Rdata")
###
#Tailor the length of the calibration time-series here
# gcm.tmax.bias_calib <- list()
# gcm.tmin.bias_calib <- list()
# cal.temp.bias_calib <- list()
# for(i in 1:12){
# tmp.tmax <- gcm.tmax.bias[[i]][-c(seq(1,9,1)),] #removes the first decade from calibration set
# tmp.tmin <- gcm.tmin.bias[[i]][-c(seq(1,9,1)),]
# tmp.cali <- cal.temp.bias[[i]][-c(seq(1,9,1)),]
#
# gcm.tmax.bias_calib[[i]] <- tmp.tmax[-c(seq(91,110,1)),] #removes the last 2 decades from calibration set
# gcm.tmin.bias_calib[[i]] <- tmp.tmin[-c(seq(91,110,1)),]
# cal.temp.bias_calib[[i]] <- tmp.cali[-c(seq(91,110,1)),]
# }
#If tailoring of calibration time-series is unnecessary, use the following:
gcm.tmax.bias_calib <- gcm.tmax.bias
gcm.tmin.bias_calib <- gcm.tmin.bias
cal.tave.bias_calib <- cal.tave.bias
###
#Quantile Mapping Block - Temperature
#This rescales GCM data distributions to the ranges and means of observation (Reanalysis 2) data.
library(qmap)
BiasCells.tmax <- list()
BiasCells.tmin <- list()
fitQUANT.tave <- list()
for(i in 1:365){
biasQUANT.tave <- list()
biasCells.tmax <- list()
biasCells.tmin <- list()
for(j in 1:20){
mod.tmax <- gcm.tmax.bias_calib[[i]][,j]-272.15
mod.tmin <- gcm.tmin.bias_calib[[i]][,j]-272.15
mod.tave <- (mod.tmax + mod.tmin)/2
obs.tave <- cal.tave.bias_calib[[i]][,j]-272.15
tmp1 <- fitQmapQUANT(obs.tave, mod.tave, wet.day=FALSE, qstep=0.01)
tmp2a <- doQmapQUANT(mod.tmax, tmp1)
tmp2b <- doQmapQUANT(mod.tmin, tmp1)
biasQUANT.tave[[j]] <- tmp1
biasCells.tmax[[j]] <- tmp2a
biasCells.tmin[[j]] <- tmp2b
rm(tmp1, tmp2a, tmp2b, mod.tmax, mod.tmin, mod.tave, obs.tave)
}
fitQUANT.tave[[i]] <- biasQUANT.tave #Assigned to a list to apply to daily GCM
BiasCells.tmax[[i]] <- biasCells.tmax
BiasCells.tmin[[i]] <- biasCells.tmin
rm(biasCells.tmax, biasCells.tmin, biasQUANT.tave)
}
# #Ensemble member 002
# save(fitQUANT.tave, file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT.Rdata")
# save(BiasCells.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1948to2005.Rdata")
# save(BiasCells.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1948to2005.Rdata")
# #Ensemble member 003
# save(fitQUANT.tave, file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em003.Rdata")
# save(BiasCells.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1948to2005_em003.Rdata")
# save(BiasCells.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1948to2005_em003.Rdata")
# #Ensemble member 004
# save(fitQUANT.tave, file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em004.Rdata")
# save(BiasCells.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1948to2005_em004.Rdata")
# save(BiasCells.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1948to2005_em004.Rdata")
#Ensemble member 005
save(fitQUANT.tave, file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em005.Rdata")
save(BiasCells.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1948to2005_em005.Rdata")
save(BiasCells.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1948to2005_em005.Rdata")
#end quantile mapping block - temperature
###
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT.Rdata") #fitQUANT.tave
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em003.Rdata") #fitQUANT.tave
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em004.Rdata") #fitQUANT.tave
load(file="/media/zizroc/Extra Drive 1/Data/R environments/fitQUANT_em005.Rdata") #fitQUANT.tave
###
#Bias Correction Block
#This bias-corrects the complete time-series.
gcm.tmax.bias.1850to2005 <- list()
gcm.tmin.bias.1850to2005 <- list()
for(i in 1:365){
gcm.tmax.m <- matrix(nrow=156, ncol=20)
gcm.tmin.m <- matrix(nrow=156, ncol=20)
for(j in 1:156){
gcm.tmax.tmp <- TREFHTMX.1850to2005.dailyRast[[j+1849]][[i]]
gcm.tmin.tmp <- TREFHTMN.1850to2005.dailyRast[[j+1849]][[i]]
gcm.tmax.m[j,] <- as.vector(gcm.tmax.tmp)
gcm.tmin.m[j,] <- as.vector(gcm.tmin.tmp)
}
gcm.tmax.bias.1850to2005[[i]] <- gcm.tmax.m
gcm.tmin.bias.1850to2005[[i]] <- gcm.tmin.m
rm(gcm.tmax.tmp, gcm.tmin.tmp)
}
# #Ensemble member 002
# save(gcm.tmax.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1850to2005.Rdata")
# save(gcm.tmin.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1850to2005.Rdata")
# #Ensemble member 003
# save(gcm.tmax.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1850to2005_em003.Rdata")
# save(gcm.tmin.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1850to2005_em003.Rdata")
# #Ensemble member 004
# save(gcm.tmax.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1850to2005_em004.Rdata")
# save(gcm.tmin.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1850to2005_em004.Rdata")
#Ensemble member 005
save(gcm.tmax.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMAX_1850to2005_em005.Rdata")
save(gcm.tmin.bias.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCM_TMIN_1850to2005_em005.Rdata")
rm(gcm.tmax.m, gcm.tmin.m)
gc()
BiasCells.tmax.1850to2005 <- list()
BiasCells.tmin.1850to2005 <- list()
for(i in 1:365){
biasCells.tmax <- list()
biasCells.tmin <- list()
for(j in 1:20){
mod.tmax <- gcm.tmax.bias.1850to2005[[i]][,j]-272.15
mod.tmin <- gcm.tmin.bias.1850to2005[[i]][,j]-272.15
tmp1a <- doQmapQUANT(mod.tmax, fitQUANT.tave[[i]][[j]])
tmp1b <- doQmapQUANT(mod.tmin, fitQUANT.tave[[i]][[j]])
biasCells.tmax[[j]] <- tmp1a
biasCells.tmin[[j]] <- tmp1b
rm(tmp1a, tmp1b, mod.tmax, mod.tmin)
}
BiasCells.tmax.1850to2005[[i]] <- biasCells.tmax
BiasCells.tmin.1850to2005[[i]] <- biasCells.tmin
rm(biasCells.tmax, biasCells.tmin)
}
# #Ensemble member 002
# save(BiasCells.tmax.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1850to2005.Rdata")
# save(BiasCells.tmin.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1850to2005.Rdata")
# #Ensemble member 003
# save(BiasCells.tmax.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1850to2005_em003.Rdata")
# save(BiasCells.tmin.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1850to2005_em003.Rdata")
# #Ensemble member 004
# save(BiasCells.tmax.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1850to2005_em004.Rdata")
# save(BiasCells.tmin.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1850to2005_em004.Rdata")
#Ensemble member 005
save(BiasCells.tmax.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMAX_1850to2005_em005.Rdata")
save(BiasCells.tmin.1850to2005, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMbias_TMIN_1850to2005_em005.Rdata")
#Organise data by day interpolate
GCM.tmax.1850to2005.to_interp <- list()
GCM.tmin.1850to2005.to_interp <- list()
for(i in 1:365){
tmp.tmax <- do.call(cbind, BiasCells.tmax.1850to2005[[i]])
tmp.tmin <- do.call(cbind, BiasCells.tmin.1850to2005[[i]])
rownames(tmp.tmax) <- c(1850:2005)
rownames(tmp.tmin) <- c(1850:2005)
GCM.tmax.1850to2005.to_interp[[i]] <- tmp.tmax
GCM.tmin.1850to2005.to_interp[[i]] <- tmp.tmin
rm(tmp.tmax, tmp.tmin)
}
# #Ensemble member 002
# save(GCM.tmax.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax.Rdata")
# save(GCM.tmin.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin.Rdata")
# #Ensemble member 003
# save(GCM.tmax.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_em003.Rdata")
# save(GCM.tmin.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_em003.Rdata")
# #Ensemble member 004
# save(GCM.tmax.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_em004.Rdata")
# save(GCM.tmin.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_em004.Rdata")
#Ensemble member 005
save(GCM.tmax.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_em005.Rdata")
save(GCM.tmin.1850to2005.to_interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_em005.Rdata")
#Interpolate
xmin = -115
xmax = -107.5
ymin = 35.05263
ymax = 42.63158
xo = seq(xmin, xmax, length.out=45)
yo = seq(ymin, ymax, length.out=46)
d1 <- expand.grid(x = xo, y = yo)
x1 = seq(xmin, xmax, length.out=4)
y1 = seq(ymin, ymax, length.out=5)
d2 <- expand.grid(x = x1, y = y1)
load(file="/media/zizroc/Extra Drive 1/Data/R environments/tmpXYZ.Rdata") #tmp.xyz
# tmp.xyz <- rasterToPoints(TREFHTMX.1850to2005.dailyRast[[1850]][[1]])
# save(tmp.xyz, file="/media/zizroc/Extra Drive 1/Data/R environments/tmpXYZ.Rdata")
##
# #Loads GCM data
# #Ensemble member 002
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax.Rdata") #GCM.tmax.1850to2005.to_interp
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin.Rdata") #GCM.tmin.1850to2005.to_interp
# #Ensemble member 003
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_003.Rdata") #GCM.tmax.1850to2005.to_interp
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_003.Rdata") #GCM.tmin.1850to2005.to_interp
# #Ensemble member 004
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_004.Rdata") #GCM.tmax.1850to2005.to_interp
# load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_004.Rdata") #GCM.tmin.1850to2005.to_interp
#Ensemble member 005
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_005.Rdata") #GCM.tmax.1850to2005.to_interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_005.Rdata") #GCM.tmin.1850to2005.to_interp
##
library(akimia)
GCM.tmax.1850to2005.Interp <- list()
for(j in 1:365){
Tmp <- list()
for(i in 1:156){
# tmp.ak <- interp(tmp.xyz[,1]-360, tmp.xyz[,2], GCM.tmax.1850to2005.to_interp[[j]][i,], xo=seq(min(d1[,1]), max(d1[,1]), length=45), yo=seq(min(d1[,2]), max(d1[,2]), length=46), linear=TRUE)
tmp.ak <- interp(d2[,1], d2[,2], GCM.tmax.1850to2005.to_interp[[j]][i,], xo=seq(min(d1[,1]), max(d1[,1]), length=45), yo=seq(min(d1[,2]), max(d1[,2]), length=46), linear=TRUE)
tmp.ak.ras <- raster(tmp.ak)
Tmp[[i]] <- tmp.ak.ras
}
GCM.tmax.1850to2005.Interp[[j]] <- Tmp
rm(Tmp, tmp.ak, tmp.ak.ras)
print(paste("Chug, chug GCM.tmax: need 365 and I'm at", j, sep=" "))
}
# #Ensemble member 002
# save(GCM.tmax.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX.Rdata")
# #Ensemble member 003
# save(GCM.tmax.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX_em003.Rdata")
# #Ensemble member 004
# save(GCM.tmax.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX_em004.Rdata")
#Ensemble member 005
save(GCM.tmax.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX_em005.Rdata")
rm(GCM.tmax.1850to2005.to_interp, GCM.tmax.1850to2005.Interp)
gc()
GCM.tmin.1850to2005.Interp <- list()
for(j in 1:365){
Tmp <- list()
for(i in 1:156){
# tmp.ak <- interp(tmp.xyz[,1]-360, tmp.xyz[,2], GCM.tmin.1850to2005.to_interp[[j]][i,], xo=seq(min(d1[,1]), max(d1[,1]), length=45), yo=seq(min(d1[,2]), max(d1[,2]), length=46), linear=TRUE)
tmp.ak <- interp(d2[,1], d2[,2], GCM.tmin.1850to2005.to_interp[[j]][i,], xo=seq(min(d1[,1]), max(d1[,1]), length=45), yo=seq(min(d1[,2]), max(d1[,2]), length=46), linear=TRUE)
tmp.ak.ras <- raster(tmp.ak)
Tmp[[i]] <- tmp.ak.ras
}
GCM.tmin.1850to2005.Interp[[j]] <- Tmp
rm(Tmp, tmp.ak, tmp.ak.ras)
print(paste("Chug, chug GCM.tmin: need 365 and I'm at", j, sep=" "))
}
# #Ensemble member 002
# save(GCM.tmin.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN.Rdata")
# #Ensemble member 003
# save(GCM.tmin.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN_em003.Rdata")
# #Ensemble member 004
# save(GCM.tmin.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN_em004.Rdata")
#Ensemble member 005
save(GCM.tmin.1850to2005.Interp, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN_em005.Rdata")
rm(GCM.tmin.1850to2005.to_interp, GCM.tmin.1850to2005.Interp)
gc()
#end bias-correction block
###
###
#PRISM Block
#Uses PRISM station-based interpolated regression model data for spatial downscaling.
###
xmin = -115
xmax = -107.5
ymin = 35.05263
ymax = 42.63158
prism.ext <- raster()
extent(prism.ext) <- c(xmin, xmax, ymin, ymax)
#The following re-writes PRISM data without aggregating it to GCM-scale
tmax.dir <- dir("/media/zizroc/My Passport/Data/PRISMdata/recent_daily/tmax", full.names=TRUE)
tmin.dir <- dir("/media/zizroc/My Passport/Data/PRISMdata/recent_daily/tmin", full.names=TRUE)
prec.dir <- dir("/media/zizroc/My Passport/Data/PRISMdata/recent_daily/ppt", full.names=TRUE)
pris.ppt <- list()
pris.max.TS <- list()
pris.min.TS <- list()
pris.mean.TS <- list()
difference <- list()
for(i in 1:25){ #from 1981 to 2005 CE
#maximum daily temperatures
bilfiles <- dir(tmax.dir[i], pattern="bil.bil", ignore.case=FALSE, full.name=TRUE)
auxfiles <- dir(tmax.dir[i], pattern="bil.aux", ignore.case=FALSE, full.name=TRUE)
pris.tmax <- bilfiles[!bilfiles %in% auxfiles] #only BIL files
rm(bilfiles, auxfiles)
#minimum daily temperatures
bilfiles <- dir(tmin.dir[i], pattern="bil.bil", ignore.case=FALSE, full.name=TRUE)
auxfiles <- dir(tmin.dir[i], pattern="bil.aux", ignore.case=FALSE, full.name=TRUE)
pris.tmin <- bilfiles[!bilfiles %in% auxfiles] #only BIL files
rm(bilfiles, auxfiles)
# #daily precipitation
# bilfiles <- dir(prec.dir[i], pattern="bil.bil", ignore.case=FALSE, full.name=TRUE)
# auxfiles <- dir(prec.dir[i], pattern="bil.aux", ignore.case=FALSE, full.name=TRUE)
# pris.tmp <- bilfiles[!bilfiles %in% auxfiles] #only BIL files
# rm(bilfiles, auxfiles)
tmp3 <- list()
for(j in 1:365){
tmp1 <- raster(pris.tmax[j])
tmp2 <- crop(tmp1, prism.ext)
tmp3[[j]] <- tmp2
rm(tmp1, tmp2)
}
pris.max.TS[[i]] <- tmp3
rm(tmp3)
tmp3 <- list()
for(j in 1:365){
tmp1 <- raster(pris.tmin[j])
tmp2 <- crop(tmp1, prism.ext)
tmp3[[j]] <- tmp2
rm(tmp1, tmp2)
}
pris.min.TS[[i]] <- tmp3
rm(tmp3)
# pris.mean.TS[[i]] <- (pris.min.TS[[i]] + pris.max.TS[[i]])/2
# difference[[i]] <- pris.max.TS[[i]] - pris.min.TS[[i]]
# for(j in 1:length(pris.tmp)){
# #for(j in 1:1440){
# tmp1 <- raster(pris.tmp[j])
# tmp2 <- crop(tmp1, prism.ext)
# if(j==1){tmp3 <- tmp2}
# if(j>1) {tmp3 <- stack(tmp3, tmp2)}
# rm(tmp1, tmp2)
# }
# pris.ppt[[i]] <- tmp3
# rm(tmp3)
print(paste("PRISM data for year", i+1980, sep=" "))
}
rm(tmax.dir, tmin.dir)
save(pris.max.TS, file="/media/zizroc/Extra Drive 1/Data/R environments/tmaxTS_IIASA.Rdata")
save(pris.min.TS, file="/media/zizroc/Extra Drive 1/Data/R environments/tminTS_IIASA.Rdata")
# save(difference, file="/media/zizroc/Extra Drive 1/Data/R environments/difference.Rdata")
# save(pris.ppt, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISMppt_daily.Rdata")
gc()
####
################################
## Normalisation sub-block ##
################################
#
pris.ave.TS <- list()
pris.dif.TS <- list()
for(i in 1:25){
for(j in 1:365){
pris.ave.TS[[j+(i-1)*364]] <- mean(pris.max.TS[[i]][[j]], pris.min.TS[[i]][[j]])
pris.dif.TS[[j+(i-1)*364]] <- pris.max.TS[[i]][[j]] - pris.min.TS[[i]][[j]]
}
print(i)
}
save(pris.ave.TS, file="/media/zizroc/Extra Drive 1/Data/R environments/TSmean.Rdata")
save(pris.dif.TS, file="/media/zizroc/Extra Drive 1/Data/R environments/TSdiff.Rdata")
#This is the mean PRISM data for each of 365 days over normalisation period (1981-2005 CE)
pris.max.sampl <- list()
pris.min.sampl <- list()
pris.ave.sampl <- list()
pris.dif.sampl <- list()
for(i in 1:365){
tmp.pris.max.sampl <- list()
tmp.pris.min.sampl <- list()
tmp.pris.ave.sampl <- list()
tmp.pris.dif.sampl <- list()
for(j in 1:25){
tmp.pris.max.sampl[[j]] <- pris.max.TS[[j]][[i]]
tmp.pris.min.sampl[[j]] <- pris.min.TS[[j]][[i]]
tmp.pris.ave.sampl[[j]] <- mean(pris.max.TS[[j]][[i]], pris.min.TS[[j]][[i]])
tmp.pris.dif.sampl[[j]] <- pris.max.TS[[j]][[i]] - pris.min.TS[[j]][[i]]
}
pris.max.sampl[[i]] <- tmp.pris.max.sampl
pris.min.sampl[[i]] <- tmp.pris.min.sampl
pris.ave.sampl[[i]] <- tmp.pris.ave.sampl
pris.dif.sampl[[i]] <- tmp.pris.dif.sampl
rm(tmp.pris.max.sampl, tmp.pris.min.sampl, tmp.pris.ave.sampl, tmp.pris.dif.sampl)
print(i)
}
save(pris.max.sampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISmaxSampl.Rdata")
save(pris.min.sampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISminSampl.Rdata")
save(pris.ave.sampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISaveSampl.Rdata")
save(pris.dif.sampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISdifSampl.Rdata")
gc()
###
###
#Loads PRISM data.
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISmaxSampl.Rdata") #pris.max.sampl
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISminSampl.Rdata") #pris.min.sampl
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISaveSampl.Rdata") #pris.ave.sampl
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISdifSampl.Rdata") #pris.dif.sampl
###
#Makes stacks of PRISM rasters for each temperature case from which to randomly draw samples.
#Randomly pull days from each of the 25 years.
pris.max.sampl.day <- list() #single raster for each of 25 years for each of 365 days
pris.min.sampl.day <- list()
pris.ave.sampl.day <- list()
pris.dif.sampl.day <- list()
pris.max.sampl.stk <- list() #raster stack containing all rasters for 25 years for each of 365 days
pris.min.sampl.stk <- list()
pris.ave.sampl.stk <- list()
pris.dif.sampl.stk <- list()
for(i in 1:365){
j = sample(c(1:25), 1) #random sample from 1:25 years generated
pris.max.sampl.day[[i]] <- pris.max.sampl[[i]][[j]]
pris.min.sampl.day[[i]] <- pris.min.sampl[[i]][[j]]
pris.ave.sampl.day[[i]] <- pris.ave.sampl[[i]][[j]]
pris.dif.sampl.day[[i]] <- pris.dif.sampl[[i]][[j]]
pris.max.sampl.stk[[i]] <- stack(pris.max.sampl[[i]])
pris.min.sampl.stk[[i]] <- stack(pris.min.sampl[[i]])
pris.ave.sampl.stk[[i]] <- stack(pris.ave.sampl[[i]])
pris.dif.sampl.stk[[i]] <- stack(pris.dif.sampl[[i]])
print(i)
}
pr.max <- list()
pr.min <- list()
pr.ave <- list()
pr.dif <- list()
for(i in 1:365){
pr.max[[i]] <- mean(pris.max.sampl.stk[[i]])
pr.min[[i]] <- mean(pris.min.sampl.stk[[i]])
pr.ave[[i]] <- mean(pris.ave.sampl.stk[[i]])
pr.dif[[i]] <- mean(pris.dif.sampl.stk[[i]])
}
save(pr.max, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tmaxStack.Rdata")
save(pr.min, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tminStack.Rdata")
save(pr.ave, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_taveStack.Rdata")
save(pr.dif, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tdifStack.Rdata")
rm(pr.max, pr.min, pris.max.sampl.stk, pris.min.sampl.stk, pris.ave.sampl.stk, pris.dif.sampl.stk, pris.max.sampl.day, pris.min.sampl.day, pris.ave.sampl.day, pris.dif.sampl.day, pris.max.sampl, pris.min.sampl, pris.ave.sampl, pris.dif.sampl)
#Dump excess memory
xmin = -115
xmax = -107.5
ymin = 35.05263
ymax = 42.63158
prism.ext <- raster()
extent(prism.ext) <- c(xmin, xmax, ymin, ymax)
#The following re-writes PRISM data without aggregating it to GCM-scale
tmax.dir <- dir("/media/zizroc/My Passport/Data/PRISMdata/recent_daily/tmax", full.names=TRUE)
tmin.dir <- dir("/media/zizroc/My Passport/Data/PRISMdata/recent_daily/tmin", full.names=TRUE)
pris.tmax <- list()
pris.tmin <- list()
for(i in 1:34){ #from 1981 to 2014 CE
#daily maximum temperature
bilfiles <- dir(tmax.dir[i], pattern="bil.bil", ignore.case=FALSE, full.name=TRUE)
auxfiles <- dir(tmax.dir[i], pattern="bil.aux", ignore.case=FALSE, full.name=TRUE)
tmp.tmax <- bilfiles[!bilfiles %in% auxfiles] #only BIL files
rm(bilfiles, auxfiles)
#daily minimum temperature
bilfiles <- dir(tmin.dir[i], pattern="bil.bil", ignore.case=FALSE, full.name=TRUE)
auxfiles <- dir(tmin.dir[i], pattern="bil.aux", ignore.case=FALSE, full.name=TRUE)
tmp.tmin <- bilfiles[!bilfiles %in% auxfiles] #only BIL files
rm(bilfiles, auxfiles)
for(j in 1:365){
tmp1 <- raster(tmp.tmax[j])
tmp2 <- crop(tmp1, prism.ext)
if(j==1){tmp3 <- tmp2}
if(j>1) {tmp3 <- stack(tmp3, tmp2)}
rm(tmp1, tmp2)
}
pris.tmax[[i+1980]] <- tmp3
rm(tmp3)
print(paste("Building PRISM TMAX data for SD. It's", sep=" ", Sys.time(), "and I'm processing year", i+1980, "/ 2014."))
for(j in 1:365){
tmp1 <- raster(tmp.tmin[j])
tmp2 <- crop(tmp1, prism.ext)
if(j==1){tmp3 <- tmp2}
if(j>1) {tmp3 <- stack(tmp3, tmp2)}
rm(tmp1, tmp2)
}
pris.tmin[[i+1980]] <- tmp3
rm(tmp3)
print(paste("Building PRISM TMIN data for SD. It's", sep=" ", Sys.time(), "and I'm processing year", i+1980, "/ 2014."))
}
rm(prec.dir)
save(pris.tmax, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISMtmax_IIASA.Rdata")
save(pris.tmin, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISMtmin_IIASA.Rdata")
gc()
################################
## PRISM resampling sub-block ##
################################
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISMtmax_IIASA.Rdata") #pris.tmax
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISMtmin_IIASA.Rdata") #pris.tmin
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax.Rdata") #GCM.tmax.1850to2005.to_interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005.Rdata") #TREFHTMN.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin.Rdata") #GCM.tmin.1850to2005.to_interp
#Ensemble member 003
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em003.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_003.Rdata") #GCM.tmax.1850to2005.to_interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em003.Rdata") #TREFHTMN.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_003.Rdata") #GCM.tmin.1850to2005.to_interp
#Ensemble member 004
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em004.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmax_em004.Rdata") #GCM.tmax.1850to2005.to_interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em004.Rdata") #TREFHTMN.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcalDay_tmin_em004.Rdata") #GCM.tmin.1850to2005.to_interp
#Create a library of GCM-scaled PRISM raster data
gcm.ext <- extent(TREFHTMX.1850to2005.dailyRast[[1950]][[180]])
tmp.mod <- TREFHTMX.1850to2005.dailyRast[[1950]][[180]]
mod.ext <- c(xmin(gcm.ext)-360, xmax(gcm.ext)-360, ymin(gcm.ext), ymax(gcm.ext))
extent(tmp.mod) <- mod.ext
values(tmp.mod) <- NA
pris.tmax.resampl <- list()
pris.tmin.resampl <- list()
for(i in 1:34){
tmp <- list()
for(j in 1:365){
tmp.obs <- pris.tmax[[i+1980]][[j]]
tmp[[j]] <- resample(tmp.obs, tmp.mod, method="bilinear")
rm(tmp.obs)
}
pris.tmax.resampl[[i+1980]] <- tmp
rm(tmp)
tmp <- list()
for(j in 1:365){
tmp.obs <- pris.tmin[[i+1980]][[j]]
tmp[[j]] <- resample(tmp.obs, tmp.mod, method="bilinear")
rm(tmp.obs)
}
pris.tmin.resampl[[i+1980]] <- tmp
rm(tmp)
print(paste("Building resampled PRISM tmax and tmin lists. It's", sep=" ", Sys.time(), "and I'm processing year", i+1980, "/ 2014."))
}
save(pris.tmax.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMAX_1981to2005.Rdata")
save(pris.tmin.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMIN_1981to2005.Rdata")
#Ensemble member 003
save(pris.tmax.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMAX_1981to2005_em003.Rdata")
save(pris.tmin.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMIN_1981to2005_em003.Rdata")
#Ensemble member 004
save(pris.tmax.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMAX_1981to2005_em004.Rdata")
save(pris.tmin.resampl, file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMIN_1981to2005_em004.Rdata")
###
#Pattern Selector Block
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMAX_1981to2005.Rdata") #pris.tmax.resampl
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_resampledTMIN_1981to2005.Rdata") #pris.tmin.resampl
library(hydroGOF)
#This selects for the PRISM temp raster whose difference from the GCM raster is a minimum. This PRISM raster is then used as the most similar precipiation distribution to the GCM.
norm <- function(x) sqrt(sum(x^2))
GCM.PRISM.tmax.matches <- list()
for(i in 1:365){
for(j in 1:156){
Tmp <- data.frame()
for(k in 1:34){
tmp.obs <- as.vector(pris.tmax.resampl[[k+1980]][[i]])
tmp.mod <- GCM.tmax.1850to2005.to_interp[[i]][j,]
tmp.cor <- cor(tmp.mod, tmp.obs)
tmp.rms <- rmse(tmp.mod, tmp.obs)
if(is.na(tmp.cor) == TRUE){tmp.cor <- 0}
tmp.all <- cbind(tmp.cor, tmp.rms, k+1980, j+1849, i)
if(k==1){Tmp <- tmp.all}
if(k >1){Tmp <- rbind(Tmp, tmp.all)}
rm(tmp.obs, tmp.mod, tmp.cor, tmp.rms, tmp.all)
}
Tmp <- as.data.frame(Tmp)
names(Tmp) <- c("PEARSON_CORR", "RMSE", "PRISM.YEAR", "GCM.YEAR", "DAY")
Tmp.max <- Tmp[which.max(Tmp[,1]),]
if(Tmp.max[,1] == 0) {Tmp.max <- Tmp[which.min(Tmp[,2]),]} #If the correlation test does not apply, select the row with the lowest RMSE.
if(j==1){TMP.max <- Tmp.max}
if(j >1){TMP.max <- rbind(TMP.max, Tmp.max)}
rm(Tmp.max)
}
GCM.PRISM.tmax.matches[[i]] <- TMP.max
print(paste("Finding similar rasters to GCM. It's", sep=" ", Sys.time(), "and I'm processing day", i, "/ 365."))
rm(TMP.max)
}
save(GCM.PRISM.tmax.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMAX.Rdata")
save(GCM.PRISM.tmax.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMAX_em003.Rdata")
save(GCM.PRISM.tmax.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMAX_em004.Rdata")
GCM.PRISM.tmin.matches <- list()
for(i in 1:365){
for(j in 1:156){
Tmp <- data.frame()
for(k in 1:34){
tmp.obs <- as.vector(pris.tmin.resampl[[k+1980]][[i]])
tmp.mod <- GCM.tmin.1850to2005.to_interp[[i]][j,]
tmp.cor <- cor(tmp.mod, tmp.obs)
tmp.rms <- rmse(tmp.mod, tmp.obs)
if(is.na(tmp.cor) == TRUE){tmp.cor <- 0}
tmp.all <- cbind(tmp.cor, tmp.rms, k+1980, j+1849, i)
if(k==1){Tmp <- tmp.all}
if(k >1){Tmp <- rbind(Tmp, tmp.all)}
rm(tmp.obs, tmp.mod, tmp.cor, tmp.rms, tmp.all)
}
Tmp <- as.data.frame(Tmp)
names(Tmp) <- c("PEARSON_CORR", "RMSE", "PRISM.YEAR", "GCM.YEAR", "DAY")
Tmp.max <- Tmp[which.max(Tmp[,1]),]
if(Tmp.max[,1] == 0) {Tmp.max <- Tmp[which.min(Tmp[,2]),]} #If the correlation test does not apply, select the row with the lowest RMSE.
if(j==1){TMP.max <- Tmp.max}
if(j >1){TMP.max <- rbind(TMP.max, Tmp.max)}
rm(Tmp.max)
}
GCM.PRISM.tmin.matches[[i]] <- TMP.max
print(paste("Finding similar rasters to GCM. It's", sep=" ", Sys.time(), "and I'm processing day", i, "/ 365."))
rm(TMP.max)
}
save(GCM.PRISM.tmin.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMIN.Rdata")
save(GCM.PRISM.tmin.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMIN_em003.Rdata")
save(GCM.PRISM.tmin.matches, file="/media/zizroc/Extra Drive 1/Data/R environments/GCMandPRISMmatchesTMIN_em004.Rdata")
#end pattern selector block
###
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005.Rdata") #TREFHTMN.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em003.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em003.Rdata") #TREFHTMN.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMX_1850to2005_em004.Rdata") #TREFHTMX.1850to2005.dailyRast
load(file="/media/zizroc/Extra Drive 1/Data/R environments/TREFHTMN_1850to2005_em004.Rdata") #TREFHTMN.1850to2005.dailyRast
###
#Temperature Block
#Makes PRISM-scale max and min temperature bounds from the GCM; i.e., BCSD CESM for TREFHTMX and TREFHTMN.
library(raster)
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tmaxStack.Rdata") #pr.max
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tminStack.Rdata") #pr.min
load(file="/media/zizroc/Extra Drive 1/Data/R environments/PRISM_tdifStack.Rdata") #pr.dif
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX.Rdata") #GCM.tmin.1850to2005.Interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN.Rdata") #GCM.tmin.1850to2005.Interp
#Ensemble member 003
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX_em003.Rdata") #GCM.tmin.1850to2005.Interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN_em003.Rdata") #GCM.tmin.1850to2005.Interp
#Ensemble member 004
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMAX_em004.Rdata") #GCM.tmin.1850to2005.Interp
load(file="/media/zizroc/Extra Drive 1/Data/R environments/GCMcorrByDays_TMIN_em004.Rdata") #GCM.tmin.1850to2005.Interp
#GCM.tmax.1850to2005 <- list()
GCM.tmin.1850to2005 <- list()
for(i in 1:156){
#Tmp.max <- list()
Tmp.min <- list()
for(j in 1:365){
tmp.max <- resample(GCM.tmax.1850to2005.Interp[[j]][[i]], pr.max[[j]], method="bilinear")
tmp.min <- resample(GCM.tmin.1850to2005.Interp[[j]][[i]], pr.min[[j]], method="bilinear")
tmp.av1 <- (tmp.max + tmp.min)/2