-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
63 lines (55 loc) · 2.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import pytorch_lightning as pl
import hydra
import torch
import random
import time
from os.path import join, basename, exists
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.strategies import DDPStrategy,FSDPStrategy
from torch.utils.data import DataLoader
from data_module import DataModule
from lightning_module import CodecLightningModule
from pytorch_lightning.loggers import WandbLogger
from omegaconf import OmegaConf
seed = 1024
seed_everything(seed)
@hydra.main(config_path='config', config_name='default', version_base=None)
def train(cfg):
checkpoint_callback = ModelCheckpoint(dirpath=cfg.log_dir,
save_top_k=-1, save_last=True,
every_n_train_steps=20000, monitor='mel_loss', mode='min')
lr_monitor = LearningRateMonitor(logging_interval='step')
callbacks = [checkpoint_callback, lr_monitor]
datamodule = DataModule(cfg)
lightning_module = CodecLightningModule(cfg)
log_dir_name = os.path.basename(os.path.normpath(cfg.log_dir))
wandb_logger = WandbLogger(
project='xcodec2', # 替换为您的项目名称
name=log_dir_name, # 替换为您的运行名称
config=OmegaConf.to_container(cfg, resolve=True) # 将 Hydra 配置转换为字典并传递
)
ckpt_path = None
last_ckpt = os.path.join(cfg.log_dir, 'last.ckpt')
if os.path.exists(last_ckpt):
ckpt_path = last_ckpt
print(f"Resuming from checkpoint: {ckpt_path}")
else:
print("No checkpoint found, starting training from scratch.")
trainer = pl.Trainer(
**cfg.train.trainer,
strategy=DDPStrategy(find_unused_parameters=True),
callbacks=callbacks,
logger=wandb_logger,
profiler="simple", # 启用 Profiler
limit_train_batches=1.0 if not cfg.debug else 0.001
)
torch.backends.cudnn.benchmark = True
# lightning_module.strict_loading = False
# LightningModule.strict_loading = True
trainer.fit(lightning_module, datamodule=datamodule,ckpt_path=ckpt_path )
print(f'Training ends, best score: {checkpoint_callback.best_model_score}, ckpt path: {checkpoint_callback.best_model_path}')
if __name__ == '__main__':
train()