-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
164 lines (130 loc) · 5.21 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import random
from abc import ABC, abstractmethod
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
class Data(ABC):
"""Data represents an abstract class providing interfaces.
Attributes
----------
base_dit str : base directory of data.
self.batch_size int : batch size.
self.num_workers int : number of workers used in multi-process data loding.
"""
base_dir = "./data"
def __init__(self, batch_size, num_workers):
self.batch_size = batch_size
self.num_workers = num_workers
@abstractmethod
def transform(self) -> torchvision.transforms.transforms.Compose:
pass
@abstractmethod
def get_dataset(self) -> torchvision.datasets.vision.VisionDataset:
pass
def prepare_data(self):
"""Get and return dataset with transformations.
Returns
-------
trainloader torch.utils.data.DataLoader : train DataLoader.
testloader torch.utils.data.DataLoader : test DataLoader.
num_classes int : number of classes of dataset.
"""
trainset, testset = self.get_dataset()
num_classes = len(trainset.classes)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers)
testloader = torch.utils.data.DataLoader(testset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers)
return trainloader, testloader, num_classes
class DataCIFAR10(Data):
"""DataCIFAR10 represents cifar10 dataset.
Attributes
----------
name str : "cifar10".
"""
name = "cifar10"
def __init__(self, batch_size=4, num_workers=2):
"""
Parameters
----------
batch_size int : batch_size.
num_workers int : number of workers used in multi-process data loding.
"""
super(DataCIFAR10, self).__init__(batch_size, num_workers)
def transform(self):
"""Only uses transforms.ToTensor()."""
return transforms.Compose([transforms.ToTensor()])
def get_dataset(self):
"""Download and load cifar10 dataset.
Returns
-------
trainset torchvision.datasets.CIFAR10 : train dataset.
testset torchvision.datasets.CIFAR10 : test dataset.
"""
trainset = torchvision.datasets.CIFAR10(root=f"{self.base_dir}/{self.name}",
train=True, download=True,
transform=self.transform())
testset = torchvision.datasets.CIFAR10(root=f"{self.base_dir}/{self.name}",
train=False, download=True,
transform=self.transform())
return trainset, testset
class DataGTSRB(Data):
"""DataGTSRB represents pre-processed GTSRB dataset.
Attributes
----------
name str : "GTSRB_processed".
"""
name = "GTSRB_processed"
def __init__(self, batch_size=4, num_workers=2):
super(DataGTSRB, self).__init__(batch_size, num_workers)
def transform(self):
"""Only uses transforms.ToTensor()."""
return transforms.Compose([transforms.ToTensor()])
def get_dataset(self):
"""Load GTSRB dataset from directory that is prepared in advance.
Returns
-------
trainset torchvision.datasets.ImageFolder : train dataset.
testset torchvision.datasets.ImageFolder : test dataset.
"""
trainset = torchvision.datasets.ImageFolder(
root=f"{self.base_dir}/{self.name}/train",
transform=self.transform())
testset = torchvision.datasets.ImageFolder(
root=f"{self.base_dir}/{self.name}/test",
transform=self.transform())
return trainset, testset
class RandomResizePadding(object):
"""DataGTSRB represents pre-processed GTSRB dataset.
Attributes
----------
self.size int : image will be rescaled to [c, size, size].
"""
def __init__(self, size):
assert isinstance(size, int)
self.size = size
def __call__(self, img):
"""Randomly resize and 0-pad the given PIL.
Parameters
----------
img PIL.Image : input image.
Returns
-------
img PIL.Image : trasnsormed image.
"""
# Randomly resize the image.
resize = random.randint(img.width, self.size)
resized_img = F.resize(img, resize)
# 0-pad the resized image. 0-pad to all left, right, top and bottom.
pad_size = self.size - resize
padded_img = F.pad(resized_img, pad_size, fill=0)
# Crop the padded image to get (size, size) image.
pos_top = random.randint(0, pad_size)
pos_left = random.randint(0, pad_size)
transformed_img = F.crop(padded_img, pos_top, pos_left, self.size, self.size)
return transformed_img