forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend_detail.cpp
409 lines (364 loc) · 15.7 KB
/
backend_detail.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#include <torch/csrc/jit/backends/backend_detail.h>
#include <ATen/code_template.h>
#include <ATen/core/jit_type.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/backends/backend_debug_info.h>
#include <torch/csrc/jit/backends/backend_resolver.h>
#include <memory>
#include <stack>
#include <unordered_map>
namespace torch::jit::detail {
namespace {
/*
* This is the API via which backend's preprocess function will obtain debug
* handles corresponding to the nodes of the graph for the lowered methods of
* the module.
* Implementation: Given graph
* For each node of the graph, request debug handle via debug_info_recorder.
* debug_info_recorder returns the next debug handle and record node with
* corresponding debug info, such as source range and inlined callstack.
*
* Backend code for lowering module, preprocess, calls
* generate_debug_handles(graph)) which will return debug handles corresponding
* to the Node* of the said graph.
*
* In to_backend, after lowering, stopRecording is called on
* BackendModuleDebugInfoRecorder: It will extract debug map. This map gets
* stored as part of the lowered module.
* During serialization, specifically for bytecode serialization, check is made
* to see if the model being serialized has any lowered modules. If so
* corresponding debug map is extracted and serialized.
*/
NodeToDebugHandle generate_debug_handles(
BackendDebugInfoRecorder& debug_info_recorder,
const std::shared_ptr<Graph>& graph) {
NodeToDebugHandle node_to_debug_handles;
std::stack<Block*> blocks_to_visit;
// TODO: Look into using DepthFirstGraphNodeIterator
// At the moment it takes non-const graph but maybe we can make it
// general such that it can work with both.
blocks_to_visit.push(graph->block());
while (!blocks_to_visit.empty()) {
Block* b = blocks_to_visit.top();
blocks_to_visit.pop();
for (Node* n : b->nodes()) {
DebugHandleType debug_handle = debug_info_recorder.getNextDebugHandle(n);
node_to_debug_handles.emplace(n, debug_handle);
for (Block* subblock : n->blocks()) {
blocks_to_visit.push(subblock);
}
}
}
return node_to_debug_handles;
}
std::unordered_map<std::string, BackendPreprocessFunction>&
backendPreprocessFunctions() {
static std::unordered_map<std::string, BackendPreprocessFunction>
preprocess_functions;
return preprocess_functions;
}
} // namespace
bool hasBackendPreprocessFunction(const std::string& name) {
return backendPreprocessFunctions().count(name);
}
void registerBackendPreprocessFunction(
const std::string& name,
const BackendPreprocessFunction& preprocess) {
TORCH_CHECK(
!detail::hasBackendPreprocessFunction(name),
"Preprocessing function for backend ",
name,
" is already registered. Ensure that registration is only called once.");
detail::backendPreprocessFunctions()[name] = preprocess;
}
BackendPreprocessFunction getBackendPreprocessFunction(
const std::string& name) {
TORCH_CHECK(
hasBackendPreprocessFunction(name),
"Preprocessing function for backend ",
name,
" is not registered.");
return backendPreprocessFunctions()[name];
}
Module codegen_backend_module(
const std::string& backend_name,
const Module& orig_module,
const c10::Dict<IValue, IValue>& method_compile_spec,
const c10::DictTypePtr& any_dict_ty) {
const c10::QualifiedName qual_backend_name(
{"__torch__", "torch", "classes", kBackendsNamespace, backend_name});
// TODO: Validate method_compile_spec.
// Clone orig_module to make sure backend transformation is
// functional.
auto cloned_module = orig_module.clone();
auto module_name = orig_module.type()->name()->qualifiedName();
// Generate LoweredModule.
Module loweredModule(
"torch.jit.LoweredModule." + backend_name + "." + module_name,
std::make_shared<CompilationUnit>(),
/*shouldMangle=*/true);
// Generate WrapperModule.
Module wrapper(
"torch.jit.LoweredWrapper." + backend_name + "." + module_name,
std::make_shared<CompilationUnit>(),
/*shouldMangle=*/true);
// 1. Initialized debug info recorder.
// 2. Later call debug_info_recorder.stopRecording() to gather
// recorded debug info and save it in __backend_debug_info.
BackendDebugInfoRecorder debug_info_recorder;
// Generate attributes.
// This is the preprocessed module.
// For backwards compatibility, for backends that implement preprocessing in
// the backend interface rather than as a separate function, we just pass
// the cloned original Module.
BackendDebugHandleGenerator debug_handle_generator =
[&](const std::shared_ptr<Graph>& g) {
return generate_debug_handles(debug_info_recorder, g);
};
loweredModule.register_attribute(
"__processed_module",
AnyType::get(),
detail::getBackendPreprocessFunction(backend_name)(
cloned_module, method_compile_spec, debug_handle_generator),
/*is_param=*/false);
// This is for the method_compile_spec passed in to to_<backend> or
// loaded from an exported model.
loweredModule.register_attribute(
"__method_compile_spec",
any_dict_ty,
method_compile_spec,
/*is_param=*/false);
// This is a pointer to a backend instance that is used to access
// compile and execute functions.
auto cls = getCustomClass(qual_backend_name.qualifiedName());
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> backend;
loweredModule.register_attribute(
"__backend", cls, IValue::make_capsule(backend));
// This is the list of opaque backend handles returned by
// backend.compile.
loweredModule.register_attribute(
"__handles",
any_dict_ty,
c10::impl::GenericDict(
any_dict_ty->getKeyType(), any_dict_ty->getValueType()),
/*is_param=*/false);
// Methods.
// This is a helper function for creating a new instance of the
// backend class.
static const auto create_backend_ct = at::jit::CodeTemplate(R"(
def __create_backend(self):
self.__backend = $name()
)");
at::jit::TemplateEnv create_backend_te;
create_backend_te.s("name", qual_backend_name.qualifiedName());
loweredModule.define(
create_backend_ct.format(create_backend_te), loweredModuleResolver());
// Helper function to expose backend.is_available() to Module generation code.
// Assumes self.__backend exists (i.e. __create_backend() has already been
// invoked).
loweredModule.define(
R"(
def __is_available(self):
return self.__backend.is_available()
)",
loweredModuleResolver());
// backend_debug_info_class is an instance of BackendDebugInfo that
// stores debug information.
// The purpose of this class is to make the debug information available
// at model saving time for serializing it outside of the lowered module,
// while still tying it to the module's lifetime (so it gets destroyed along
// with it).
// Whereas this information is not serialized as part of the lowered
// module, we still need to provide a valid instance of the
// BackendDebugInfo class when the lowered module is deserialized.
// Since the deserialized modules does not need this information,
// we create a "dummy" instance with no extra code dependencies (to avoid
// overhead) when the backend is created in __setstate__.
c10::intrusive_ptr<torch::CustomClassHolder> backend_debug_info_class;
const c10::QualifiedName backend_debug_info_class_name(
{"__torch__",
"torch",
"classes",
kBackendUtilsNamespace,
kBackendDebugInfoClass});
auto debug_info_cls =
getCustomClass(backend_debug_info_class_name.qualifiedName());
TORCH_CHECK(debug_info_cls, "BackendDebugInfo class must be available.");
loweredModule.register_attribute(
"__backend_debug_info",
OptionalType::create(debug_info_cls),
IValue::make_capsule(backend_debug_info_class));
static const auto create_backend_debug_info_ct = at::jit::CodeTemplate(R"(
def __create_backend_debug_info(self):
self.__backend_debug_info = $backend_debug_info()
)");
at::jit::TemplateEnv create_backend_debug_info_te;
create_backend_debug_info_te.s(
"backend_debug_info", backend_debug_info_class_name.qualifiedName());
loweredModule.define(
create_backend_debug_info_ct.format(create_backend_debug_info_te),
loweredModuleResolver());
// getstate and setstate are for serialization/deserialization of
// the LoweredModule.
// setstate is in charge of initializing self.__backend by invoking
// __create_backend().
loweredModule.define(
R"(
def __getstate__(self):
# The third parameter indicates whether __setstate__ must create
# the backend instance. It's hardcoded to True since the only
# case it can be false is when __setstate__ is called from
# outside the module (at module creation time), because
# __create_backed has been called already (also directly).
return self.__method_compile_spec, self.__processed_module, True
)",
loweredModuleResolver());
loweredModule.define(
R"(
def __setstate__(self, state):
self.__method_compile_spec = state[0]
self.__processed_module = state[1]
# state[2] indicates whether to create the backend instance.
if state[2]:
self.__create_backend()
self.__create_backend_debug_info()
if self.__backend.is_available() :
self.__handles = self.__backend.compile(self.__processed_module, self.__method_compile_spec)
else:
raise Exception("Backend is not available.")
)",
loweredModuleResolver());
// This loop generates one method on the LoweredModule for every key
// in method_compile_spec.
std::vector<std::string> wrapper_methods;
for (auto& e : method_compile_spec) {
std::string method_name = e.key().toStringRef();
static const auto method_ct = at::jit::CodeTemplate(R"(
def $method(self${,def_inputs}):
typed_inputs: List[Any] = [${fwd_inputs,}]
if self.__backend.is_available() :
$unpack, = self.__backend.execute(self.__handles["$method"], typed_inputs)
${refine,}
return $ret
else:
raise Exception("Backend is not available.")
)");
static const auto wrapper_method_ct = at::jit::CodeTemplate(R"(
def $method(self${,def_inputs}):
return self.__loweredModule__.$method(${fwd_inputs})
)");
at::jit::TemplateEnv method_te, wrapper_method_te;
method_te.s("method", method_name);
wrapper_method_te.s("method", method_name);
auto method = orig_module.get_method(method_name);
auto& function = method.function();
auto& schema = function.getSchema();
// Generate the inputs for the function signature (def_inputs) and
// for passing to backend.execute (fwd_inputs).
std::vector<std::string> def_inputs, fwd_inputs;
for (const auto& arg : schema.arguments()) {
auto name = arg.name();
// Skip self since that is only and always present in the
// signature.
if (name == "self") {
continue;
}
auto default_value = arg.default_value();
if (arg.kwarg_only()) {
// If this is a kwarg, it needs to be emitted as keyword=value
// in the definition and keyword=keyword in the call to
// backend_execute.
TORCH_INTERNAL_ASSERT(default_value.has_value());
std::stringstream def_ss, fwd_ss;
// Annotate type of the arg
def_ss << name << ": " << arg.type()->annotation_str(nullptr) << "=";
fwd_ss << name << "=" << name;
default_value->repr(
def_ss, [](std::ostream&, const IValue&) -> bool { return false; });
def_inputs.emplace_back(def_ss.str());
fwd_inputs.emplace_back(fwd_ss.str());
} else {
// If this is not a kwarg, it should be emitted as is in the
// signature and the call to backend_execute.
std::stringstream def_ss;
// Annotate type of the arg
def_ss << name << ": " << arg.type()->annotation_str(nullptr);
def_inputs.emplace_back(def_ss.str());
fwd_inputs.emplace_back(name);
}
}
// Generate a comma-delimited list of identifiers to unpack
// outputs, as well as a list of isinstance checks to make sure
// the backend returned the types it was supposed to.
std::stringstream out_ss, type_check_ss;
std::vector<std::string> type_checks;
TORCH_INTERNAL_ASSERT(schema.returns().size() == 1);
auto out_ty = schema.returns().at(0).type();
out_ss << "_0";
type_check_ss << "assert isinstance(_0, ";
auto out_tuple_ty = out_ty->cast<TupleType>();
if (out_tuple_ty) {
auto tuple_elements = out_tuple_ty->elements();
type_check_ss << tuple_elements[0]->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
for (unsigned i = 1, e = tuple_elements.size(); i < e; ++i) {
type_check_ss.str(std::string());
type_check_ss.clear();
out_ss << ", _" << i;
type_check_ss << "assert isinstance(_" << i << ", "
<< tuple_elements[i]->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
} else {
type_check_ss << out_ty->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
method_te.v("def_inputs", def_inputs);
method_te.v("fwd_inputs", fwd_inputs);
method_te.v("refine", type_checks);
method_te.s("unpack", out_ss.str());
wrapper_method_te.v("def_inputs", def_inputs);
wrapper_method_te.v("fwd_inputs", fwd_inputs);
wrapper_methods.emplace_back(wrapper_method_ct.format(wrapper_method_te));
// If the output type is a single element tuple then add an extra comma
// to ensure the final output maintains this type.
if (out_tuple_ty && out_tuple_ty->elements().size() == 1) {
out_ss << ",";
}
method_te.s("ret", out_ss.str());
loweredModule.define(method_ct.format(method_te), loweredModuleResolver());
}
// If backend is available, call __setstate__ to ensure that the returned
// Module is ready to run.
// Otherwise throw a warning indicating that the resulting Module is not
// ready for execution until is loaded to a device with the backend.
loweredModule.run_method("__create_backend");
if (loweredModule.run_method("__is_available").toBool()) {
auto state = at::ivalue::Tuple::create(
method_compile_spec,
loweredModule.attr("__processed_module"),
/*create_backend*/ false);
loweredModule.run_method("__setstate__", state);
} else {
TORCH_WARN(
"Backend [",
backend_name,
"] is not available. Execution of this Module is still possible by "
"saving and loading on a device where the backend is available.");
}
// stop debug info recording and get debug_info_map
auto debug_info_map = debug_info_recorder.stopRecording();
loweredModule.run_method("__create_backend_debug_info");
auto backend_debug_info = loweredModule.attr("__backend_debug_info")
.toCustomClass<PyTorchBackendDebugInfo>();
backend_debug_info->setDebugInfoMap(std::move(debug_info_map));
// Wrap lowered module to obfuscate custom serialization logic
wrapper.register_module("__loweredModule__", loweredModule);
for (auto& method : wrapper_methods) {
wrapper.define(method);
}
return wrapper;
}
} // namespace torch::jit::detail