forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.h
117 lines (105 loc) · 3.94 KB
/
backend.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#pragma once
#include <ATen/core/builtin_function.h>
#include <ATen/core/stack.h>
#include <torch/csrc/jit/backends/backend_interface.h>
#include <torch/custom_class.h>
namespace torch::jit {
namespace {
// NOLINTNEXTLINE(clang-diagnostic-unneeded-internal-declaration)
inline c10::FunctionSchema getIsAvailableSchema() {
c10::Argument self("self", c10::AnyType::get());
c10::Argument available("available", c10::BoolType::get());
c10::FunctionSchema preprocessor_schema(
"is_available",
/*overload_name=*/"",
/*arguments=*/{self},
/*returns=*/{available});
return preprocessor_schema;
}
constexpr static auto kBackendsNamespace = "__backends__";
// NOLINTNEXTLINE(clang-diagnostic-unneeded-internal-declaration)
inline c10::FunctionSchema getCompileSchema() {
c10::Argument self("self", c10::AnyType::get());
c10::Argument mod("processed", c10::AnyType::get());
auto any_dict_ty =
c10::DictType::create(c10::StringType::get(), c10::AnyType::get());
c10::Argument method_compile_spec("method_compile_spec", any_dict_ty);
c10::Argument handles("handles", any_dict_ty);
c10::FunctionSchema compile_schema(
"compile",
/*overload_name=*/"",
/*arguments=*/{self, mod, method_compile_spec},
/*returns=*/{handles});
return compile_schema;
}
// NOLINTNEXTLINE(clang-diagnostic-unneeded-internal-declaration)
inline c10::FunctionSchema getExecuteSchema() {
auto any_list_ty = c10::ListType::create(c10::AnyType::get());
c10::Argument self("self", c10::AnyType::get());
c10::Argument handle("handle", c10::AnyType::get());
c10::Argument input("input", any_list_ty);
c10::Argument output("output", any_list_ty);
return c10::FunctionSchema(
"execute",
/*overload_name=*/"",
/*arguments=*/{self, handle, input},
/*returns=*/{output});
}
template <typename TBackendInterface>
std::function<void(Stack&)> getIsAvailableFunc() {
return [](Stack& stack) {
auto self = pop(stack).toCustomClass<TBackendInterface>();
auto ret = self->is_available();
push(stack, ret);
};
}
template <typename TBackendInterface>
std::function<void(Stack&)> getCompileFunc() {
return [](Stack& stack) {
auto method_compile_spec = pop(stack).toGenericDict();
auto processed = pop(stack);
auto self = pop(stack).toCustomClass<TBackendInterface>();
auto ret = self->compile(processed, method_compile_spec);
push(stack, ret);
};
}
template <typename TBackendInterface>
std::function<void(Stack&)> getExecuteFunc() {
return [](Stack& stack) {
auto args = pop(stack);
auto handle = pop(stack);
auto self = pop(stack);
auto backend = self.toCustomClass<TBackendInterface>();
auto res = backend->execute(handle, args.toList());
push(stack, res);
};
}
} // namespace
// Static registration API for backends.
template <class TBackendInterface>
class backend {
static_assert(
std::is_base_of_v<PyTorchBackendInterface, TBackendInterface>,
"torch::jit::backend<T> requires T to inherit from PyTorchBackendInterface");
std::string backend_name_;
public:
// Registers a new backend with /p name, and the given /p preprocess
// function.
backend(const std::string& name) : backend_name_(name) {
static auto cls = torch::class_<TBackendInterface>(kBackendsNamespace, name)
.def(torch::init<>())
._def_unboxed(
"is_available",
getIsAvailableFunc<TBackendInterface>(),
getIsAvailableSchema())
._def_unboxed(
"compile",
getCompileFunc<TBackendInterface>(),
getCompileSchema())
._def_unboxed(
"execute",
getExecuteFunc<TBackendInterface>(),
getExecuteSchema());
}
};
} // namespace torch::jit