forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_multi_threaded_pg.py
340 lines (271 loc) · 12.3 KB
/
test_multi_threaded_pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Owner(s): ["oncall: distributed"]
import operator
import os
import sys
import threading
from functools import reduce
from unittest import skip, SkipTest
import torch
import torch.autograd
import torch.distributed as dist
from torch._C._distributed_c10d import ReduceOp
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.testing._internal.common_distributed import (
MultiThreadedTestCase,
skip_if_lt_x_gpu,
spawn_threads_and_init_comms,
)
from torch.testing._internal.common_utils import IS_SANDCASTLE, run_tests, TestCase
DEFAULT_WORLD_SIZE = 4
class TestCollectivesWithWrapper(TestCase):
@spawn_threads_and_init_comms(world_size=4)
def test_broadcast_object_list(self):
val = 99 if dist.get_rank() == 0 else None
object_list = [val] * dist.get_world_size()
dist.broadcast_object_list(object_list=object_list)
self.assertEqual(99, object_list[0])
def test_collective_error_on_rank_zero(self):
@spawn_threads_and_init_comms(world_size=4)
def _test_method(self):
input_tensor = torch.ones(3, 3) * dist.get_rank() # perform 1st all gather
output_tensors = [
torch.empty_like(input_tensor) for _ in range(dist.get_world_size())
]
dist.all_gather(output_tensors, input_tensor)
if dist.get_rank() == 0:
raise AssertionError("Mimic real test failure.") # fail on rank 0
dist.all_gather(output_tensors, input_tensor) # perform 2nd all gather
with self.assertRaises(RuntimeError):
_test_method(self)
def test_collective_error_on_rank_non_zero(self):
@spawn_threads_and_init_comms(world_size=4)
def _test_method(self):
input_tensor = torch.ones(3, 3) * dist.get_rank() # perform 1st all gather
output_tensors = [
torch.empty_like(input_tensor) for _ in range(dist.get_world_size())
]
dist.all_gather(output_tensors, input_tensor)
if dist.get_rank() == 1:
raise AssertionError("Mimic real test failure.") # fail on rank 1
dist.all_gather(output_tensors, input_tensor) # perform 2nd all gather
with self.assertRaises(RuntimeError):
_test_method(self)
def test_collective_error_on_rank_non_zero_all(self):
@spawn_threads_and_init_comms(world_size=4)
def _test_method(self):
input_tensor = torch.ones(3, 3) * dist.get_rank() # perform 1st all gather
output_tensors = [
torch.empty_like(input_tensor) for _ in range(dist.get_world_size())
]
dist.all_gather(output_tensors, input_tensor)
if dist.get_rank() > 0:
raise AssertionError(
"Mimic real test failure."
) # fail on all non-zero rank
dist.all_gather(output_tensors, input_tensor) # perform 2nd all gather
with self.assertRaises(RuntimeError):
_test_method(self)
def test_skip(self):
@spawn_threads_and_init_comms(world_size=4)
@skip("check if skip exception can be captured correctly.")
def _test_method(self):
pass
if not IS_SANDCASTLE:
with self.assertRaises(SkipTest):
_test_method(self)
@spawn_threads_and_init_comms(world_size=4)
def test_all_to_all_single_tensor(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
send = torch.full((world_size, 2), rank)
sizes = torch.ones(world_size, dtype=torch.int64)
out = torch.zeros(world_size, 2, dtype=send.dtype)
dist.all_to_all_single(out, send, sizes, sizes)
self.assertEqual(out.tolist(), list(zip(range(world_size), range(world_size))))
@spawn_threads_and_init_comms(world_size=4)
def test_all_to_all_single_list(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
send = torch.full((world_size, 2), rank)
sizes = [1] * world_size
out = torch.zeros(world_size, 2, dtype=send.dtype)
dist.all_to_all_single(out, send, sizes, sizes)
self.assertEqual(out.tolist(), list(zip(range(world_size), range(world_size))))
@spawn_threads_and_init_comms(world_size=4)
def test_all_to_all_single_none(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
send = torch.full((world_size, 2), rank)
out = torch.zeros(world_size, 2, dtype=send.dtype)
dist.all_to_all_single(out, send)
self.assertEqual(out.tolist(), list(zip(range(world_size), range(world_size))))
class TestCollectivesWithBaseClass(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
os.environ["TORCH_DIST_INIT_BARRIER"] = "1"
super().setUp()
self._spawn_threads()
def tearDown(self):
super().tearDown()
os.environ["TORCH_DIST_INIT_BARRIER"] = "0"
def test_allgather(self):
input_tensor = torch.ones(3, 3) * dist.get_rank()
output_tensors = [
torch.empty_like(input_tensor) for _ in range(self.world_size)
]
dist.all_gather(output_tensors, input_tensor)
for rank, out_tensor in enumerate(output_tensors):
self.assertEqual(out_tensor, torch.ones(3, 3) * rank)
def test_broadcast(self):
input_tensor = torch.ones(3, 3) * dist.get_rank()
for rank in range(self.world_size):
cloned_input = input_tensor.clone()
dist.broadcast(cloned_input, src=rank)
self.assertEqual(cloned_input, torch.ones(3, 3) * rank)
def test_scatter(self):
if dist.get_rank() == 0:
scatter_list = [torch.ones(3, 3) * rank for rank in range(self.world_size)]
else:
scatter_list = None
output_tensor = torch.empty(3, 3)
dist.scatter(output_tensor, scatter_list)
self.assertEqual(output_tensor, torch.ones(3, 3) * dist.get_rank())
def test_reduce_scatter(self):
to_reduce_scatter = [torch.ones(3, 3) * rank for rank in range(self.world_size)]
output_tensor = torch.empty(3, 3)
dist.reduce_scatter(output_tensor, to_reduce_scatter)
expected_tensor = torch.ones(3, 3) * dist.get_rank() * self.world_size
self.assertEqual(output_tensor, expected_tensor)
output_tensor = torch.empty(3, 3)
dist.reduce_scatter(output_tensor, to_reduce_scatter, op=dist.ReduceOp.AVG)
expected_tensor = torch.ones(3, 3) * dist.get_rank()
self.assertEqual(output_tensor, expected_tensor)
def test_broadcast_object_list(self):
val = 99 if dist.get_rank() == 0 else None
object_list = [val] * dist.get_world_size()
print(f"{dist.get_rank()} -> {dist.get_world_size()}")
dist.broadcast_object_list(object_list=object_list)
self.assertEqual(99, object_list[0])
def test_all_reduce(self):
output = torch.ones(3, 3) * dist.get_rank()
dist.all_reduce(output)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
self.assertEqual(output, torch.ones(3, 3) * res_num)
def test_all_to_all(self):
rank = self.rank
world_size = self.world_size
input_tensor_list = [
torch.ones(3, 3) * x
for x in range(rank * world_size, (rank + 1) * world_size)
]
output_tensor_list = [torch.empty_like(tensor) for tensor in input_tensor_list]
dist.all_to_all(output_tensor_list, input_tensor_list)
expected_tensor_list = [
torch.ones(3, 3) * x
for x in range(rank, world_size * world_size, world_size)
]
self.assertEqual(expected_tensor_list, output_tensor_list)
def test_all_reduce_ops(self):
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.PRODUCT)
expected = reduce(operator.mul, range(1, self.world_size + 1))
self.assertEqual(expected, tensor.item())
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.MIN)
self.assertEqual(1, tensor.item())
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.MAX)
self.assertEqual(self.world_size, tensor.item())
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.BAND)
expected = reduce(operator.and_, range(1, self.world_size + 1))
self.assertEqual(expected, tensor.item())
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.BOR)
expected = reduce(operator.or_, range(1, self.world_size + 1))
self.assertEqual(expected, tensor.item())
tensor = torch.tensor([dist.get_rank() + 1])
dist.all_reduce(tensor, op=ReduceOp.BXOR)
expected = reduce(operator.xor, range(1, self.world_size + 1))
self.assertEqual(expected, tensor.item())
def test_assert_equal_on_rank(self):
# RNG is shared across threads. So instead of asserting on all threads
# we only assert on rank 0
self_tensor = torch.rand(3, 3)
rank_0_tensor = self_tensor.clone()
dist.broadcast(rank_0_tensor, src=0)
self.assertEqualOnRank(rank_0_tensor, self_tensor, rank=0)
self.assertNotEqualOnRank(rank_0_tensor, self_tensor, rank=1)
def test_subpg(self):
subpg0 = dist.new_group([0, 1])
subpg1 = dist.new_group([2, 3])
current_rank = dist.get_rank()
output = torch.ones(3, 3) * current_rank
# call all_reduce on subpg0 and subpg1 concurrently
if current_rank in [0, 1]:
dist.all_reduce(output, group=subpg0)
else:
dist.all_reduce(output, group=subpg1)
if current_rank in [0, 1]:
self.assertEqual(output, torch.ones(3, 3) * 1)
else:
self.assertEqual(output, torch.ones(3, 3) * 5)
def test_using_pg_from_another_thread(self):
def stuff_in_other_thread(pg):
x = torch.rand(4, requires_grad=True)
dist.all_reduce(x, group=pg)
t = threading.Thread(target=stuff_in_other_thread, args=(dist.group.WORLD,))
t.start()
t.join()
def test_gather(self):
if dist.get_rank() == 0:
gather_list = [torch.empty(3, 3) for _ in range(self.world_size)]
else:
gather_list = None
input_tensor = torch.ones(3, 3) * dist.get_rank()
dist.gather(input_tensor, gather_list)
if dist.get_rank() == 0:
for i in range(self.world_size):
self.assertEqual(gather_list[i], torch.ones(3, 3) * i)
def test_all_reduce_coalesced(self):
t0 = torch.ones(3, 3) * dist.get_rank()
t1 = torch.ones(3, 3) * dist.get_rank() * 2
dist.all_reduce_coalesced([t0, t1])
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
self.assertEqual(t0, torch.ones(3, 3) * res_num)
self.assertEqual(t1, torch.ones(3, 3) * (res_num * 2))
@skip_if_lt_x_gpu(1)
def test_bwd_sees_fwd_pg(self):
fwd_tid = threading.current_thread().ident
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, rank):
result = rank * 2
ctx.save_for_backward(result, rank)
assert int(rank.item()) == dist.get_rank()
return result
@staticmethod
def backward(ctx, grad_output):
result, rank = ctx.saved_tensors
bwd_tid = threading.current_thread().ident
self.assertEqual(
fwd_tid,
bwd_tid,
f"bwd not running in the same thread a fwd for rank {rank.item()}",
)
self.assertTrue(dist.is_initialized())
self.assertEqual(int(rank.item()), dist.get_rank())
dist.all_reduce(result)
self.assertEqual(int(result.item()), 12) # (0 + 1 + 2 + 3) * 2
return grad_output * result
x = torch.tensor(
[dist.get_rank()], dtype=torch.float, device="cuda", requires_grad=True
)
x = MyFunc.apply(x)
x.sum().backward()
if __name__ == "__main__":
run_tests()