forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_functional_api.py
826 lines (673 loc) · 29 KB
/
test_functional_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# Owner(s): ["oncall: distributed"]
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.testing._internal.inductor_utils import HAS_GPU
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.testing._internal.common_distributed import (
DistributedTestBase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfHpu,
TEST_CUDA,
TEST_HPU,
TestCase,
)
# NOTE: Instructions for adding new device types to this test file
#
# This test file contains two types of tests:
# 1. Tests that run on both CPUs and accelerators
# 2. Tests that run only on accelerators
#
# We use two variables to manage device types:
# - `devices`: A list containing device types for both CPU and accelerator tests
# - `DEVICE`: A string containing only the accelerator type for accelerator-only tests
#
# To add a new device type:
# 1. Add a new `elif` statement in the if-else ladder below
# 2. Check for the presence of your device (e.g., TEST_NEW_DEVICE)
# 3. Append your device type to the `devices` list
# 4. Assign your device type string to `DEVICE`
#
# Example:
# elif TEST_NEW_DEVICE:
# devices.append("new_device")
# DEVICE = "new_device"
DEVICE = "cuda"
devices = ["cpu"]
if TEST_HPU:
devices.append("hpu")
DEVICE = "hpu"
elif TEST_CUDA:
devices.append("cuda")
def new_subgroups(group_size: int, pg_tag=None):
world_size = dist.get_world_size()
subgroups = []
cur_subgroup = None
for subgroup_id in range(world_size // group_size):
start_rank = subgroup_id * group_size
end_rank = start_rank + group_size
ranks_in_subgroup = list(range(start_rank, end_rank))
subgroup = c10d._new_group_with_tag(
ranks=ranks_in_subgroup,
pg_tag=pg_tag,
)
subgroups.append(subgroup)
rank = dist.get_rank()
if rank in ranks_in_subgroup:
cur_subgroup = subgroup
return cur_subgroup, subgroups
@skipIfHpu
class TestExpand(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
def test_expand_1d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3], "bla")
self.assertEqual("bla", tag)
def test_expand_2d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]], "blu")
self.assertEqual("blu", tag)
with self.assertRaisesRegex(ValueError, "group sizes must be identical"):
ft_c._expand_group([[0], [1, 2, 3]])
def test_expand_process_group(self):
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD)
self.assertEqual(c10d._get_group_tag(dist.group.WORLD), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD, "bla")
self.assertEqual("bla", tag)
my_pg, others = new_subgroups(group_size=2)
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual(c10d._get_group_tag(my_pg), tag)
self.assertEqual(dist.get_process_group_ranks(my_pg), rankset)
self.assertEqual(2, group_size)
my_pg = None
for i in range(dist.get_world_size()):
group = c10d._new_group_with_tag([i], pg_tag="my_pg")
if i == dist.get_rank():
my_pg = group
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual("my_pg", tag)
self.assertEqual([dist.get_rank()], rankset)
self.assertEqual(1, group_size)
tag, rankset, group_size = ft_c._expand_group(my_pg, "bla")
self.assertEqual("bla", tag)
def test_expand_device_mesh(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
def test_expand_device_mesh_tuple(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
with self.assertRaisesRegex(AssertionError, "Only 1D mesh"):
tag, rankset, group_size = ft_c._expand_group(mesh)
tag, rankset, group_size = ft_c._expand_group((mesh, 0))
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
expected_rankset = [0, 2] if dist.get_rank() in [0, 2] else [1, 3]
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group((mesh, 1))
expected_rankset = [0, 1] if dist.get_rank() in [0, 1] else [2, 3]
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=1)), tag)
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
@skipIfHpu
class TestPgTag(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
"""
The behavior we want is as follow:
- rankset+tag will always result in the same PG.
Do we enforce this by failing creation of new PGs or returning existing ones?
Return existing one.
- default tag gives existing behavior.
This means we should create duplicates.
- _expand_group on _default-tagged pg should always resolve to it
This mean we can't depend on empty tag + rankset.
"""
def test_pg_creation_with_tag(self):
my_group, _ = new_subgroups(group_size=2, pg_tag="blu")
my_group2, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(my_group, my_group2)
my_group3, _ = new_subgroups(group_size=2, pg_tag="blu2")
self.assertNotEqual(my_group, my_group3)
my_group4, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group, my_group4)
my_group5, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group4, my_group5)
def test_pg_lookup_roundtrip(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="blu2")
pg_notag0, _ = new_subgroups(group_size=2)
pg_notag1, _ = new_subgroups(group_size=2)
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
def test_pg_lookup_with_tag(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="bla")
pg_notag0, _ = new_subgroups(group_size=2)
def roundtrip(pg, pg_tag):
tag, rankset, _ = ft_c._expand_group(pg, pg_tag)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag1, "blu"))
self.assertEqual(pg_tag0, roundtrip(pg_notag0, "blu"))
# Cannot erase the tag of a PG
self.assertEqual(pg_tag0, roundtrip(pg_tag0, ""))
def test_find_or_create_pg(self):
pg = c10d._find_or_create_pg_by_ranks_and_tag("blu", [0, 1, 2, 3], 2)
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(pg, pg_tag0)
def test_find_root_pg(self):
pg = c10d._find_pg_by_ranks_and_tag("", [0, 1, 2, 3])
self.assertEqual(dist.group.WORLD, pg)
@instantiate_parametrized_tests
@skipIfHpu
class TestTraceableCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
@parametrize("device", devices)
def test_broadcast(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
if dist.get_rank() == 0:
tensor = torch.ones([4], device=device)
else:
tensor = torch.zeros([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.broadcast(tensor, 0, mesh)
self.assertEqual(res, torch.ones([4], device=device))
@parametrize("device", devices)
def test_all_reduce_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensor = torch.ones([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce(tensor, "sum", mesh)
self.assertEqual(res, torch.tensor([4, 4, 4, 4], dtype=torch.float))
mesh = dt.DeviceMesh(device, torch.arange(4).view(2, 2))
res2 = ft_c.all_reduce(tensor, "sum", (mesh, 1))
self.assertEqual(res2, torch.tensor([2, 2, 2, 2], dtype=torch.float))
@parametrize("device", devices)
def test_all_reduce_coalesced_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
t0 = torch.ones([4], device=device)
t1 = torch.ones([6], device=device) + 2
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce_coalesced([t0, t1], "sum", mesh)
self.assertEqual(res[0], t0 * 4)
self.assertEqual(res[1], t1 * 4)
@parametrize("device", devices)
def test_all_gather_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_gather = [0, 1, 2]
for dim in dims_to_gather:
output_size = [3, 3, 3]
output_size[dim] *= mesh.size(0)
# each rank have its own tensor, all_gather gives a bigger tensor
local_tensor = torch.ones([3, 3, 3], device=device)
gathered_tensor = ft_c.all_gather_tensor(
local_tensor, gather_dim=dim, group=(mesh, 0)
)
self.assertEqual(gathered_tensor, torch.ones(output_size))
@parametrize("device", devices)
def test_all_gather_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [torch.ones([4], device=device), torch.ones([4], device=device) + 1]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_gather_into_tensor_coalesced(tensors, mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.ones([4 * dist.get_world_size()], device=device), res[0])
self.assertEqual(
torch.ones([4 * dist.get_world_size()], device=device) + 1, res[1]
)
@parametrize("device", devices)
def test_reduce_scatter_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
group_size = mesh.size(0)
input_size = [3, 3]
output_size = [3, 3]
output_size[dim] *= group_size
input_tensor = torch.ones(output_size, device=device)
res_num = 1 * group_size
rs_tensor = ft_c.reduce_scatter_tensor(
input_tensor, "sum", scatter_dim=dim, group=(mesh, 0)
)
self.assertEqual(rs_tensor, torch.ones(input_size) * res_num)
@parametrize("device", devices)
def test_reduce_scatter_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [
torch.ones([4], dtype=torch.int64, device=device),
torch.ones([4], dtype=torch.int64, device=device) + 1,
]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.reduce_scatter_tensor_coalesced(tensors, "sum", [0, 0], mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.tensor([4], device=device), res[0])
self.assertEqual(torch.tensor([8], device=device), res[1])
class TestMetaCollectives(TestCase):
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", "0")
self.assertEqual(x.size(), out.size())
@skipIfHpu
class TestGradCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce(self):
x = torch.rand([4], requires_grad=True)
y = torch.rand([4], requires_grad=True)
out = ft_c.all_reduce(x, "sum", dist.group.WORLD)
(out + y).sum().backward()
self.assertIsNone(x.grad)
class TestMakeFx(TestCase):
def setUp(self):
# make_fx is not thread-safe due to patching nd mutating global states
# so create a fake_pg.
self.rank = 0
self.world_size = 2
store = FakeStore()
dist.init_process_group(
backend="fake",
world_size=self.world_size,
rank=self.rank,
store=store,
)
def tearDown(self):
super().tearDown()
self.assertFalse(torch.fx._symbolic_trace.is_fx_tracing())
def test_all_reduce_tracing(self):
def allred(input):
return ft_c.all_reduce(input, "sum", group=dist.group.WORLD) + 1
graph = make_fx(allred)(torch.rand(4))
FileCheck().check("all_reduce").check("wait_tensor").run(str(graph.graph))
mesh = dt.DeviceMesh("cpu", torch.arange(self.world_size))
def allred_mesh(input):
return ft_c.all_reduce(input, "sum", mesh) + 1
mesh_graph = make_fx(allred_mesh)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_graph.graph)
)
def allred_mesh_dim(input):
return ft_c.all_reduce(input, "sum", (mesh, 0)) + 1
mesh_dim_graph = make_fx(allred_mesh_dim)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_dim_graph.graph)
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
# Adding support for HCCL backend
# To add a different backend
# add an elif to the same chain with a conditional checking for the device type (along the lines of TEST_HPU or TEST_CUDA)
# And then set the BACKEND variable appropriately.
if TEST_HPU:
BACKEND = dist.Backend.HCCL
# allows you to check for multiple accelerator irrespective of device type
# to add new device types to this check simply follow the same format
# and append an elif with the conditional and appropriate device count function for your new device
def exit_if_lt_x_accelerators(x):
if TEST_CUDA:
if torch.cuda.device_count() < x:
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
elif TEST_HPU:
if torch.hpu.device_count() < x:
sys.exit(TEST_SKIPS[f"multi-hpu-{x}"].exit_code)
def with_comms(func=None):
if func is None:
return partial(with_comms)
@wraps(func)
def wrapper(self, *args, **kwargs):
if BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
kwargs["device"] = DEVICE
self.pg = self.create_pg(device=DEVICE)
try:
return func(self, *args, **kwargs)
finally:
torch.distributed.destroy_process_group()
return wrapper
class TestCollectivesWithDistributedBackend(DistributedTestBase):
@with_comms()
def test_all_gather_into_tensor_coalesced(self, device):
exit_if_lt_x_accelerators(self.world_size)
tensors = [
torch.ones([4], device=device),
torch.ones([4], device=device) + 1,
]
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
res = ft_c.all_gather_into_tensor_coalesced(tensors, mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.ones([4 * dist.get_world_size()]), res[0])
self.assertEqual(torch.ones([4 * dist.get_world_size()]) + 1, res[1])
@with_comms()
def test_all_to_all_single(self, device):
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
row = self.world_size * (rank + 1) * (self.world_size + 1) / 2
x = torch.ones(int(row), 5, device=device) * (rank + 1)
split_sizes = [(i + 1) * (rank + 1) for i in range(self.world_size)]
y = ft_c.all_to_all_single(
x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.split(x, split_sizes)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@with_comms()
def test_all_to_all_single_1d_input(self, device):
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
row = self.world_size * (rank + 1) * (self.world_size + 1) / 2
x = torch.ones(int(row), device=device) * (rank + 1)
split_sizes = [(i + 1) * (rank + 1) for i in range(self.world_size)]
y = ft_c.all_to_all_single(
x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.split(x, split_sizes)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@with_comms()
def test_all_to_all_single_split_sizes_none(self, device):
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
x = torch.ones(self.world_size, self.world_size, device=device) * (rank + 1)
y = ft_c.all_to_all_single(
x, output_split_sizes=None, input_split_sizes=None, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.chunk(x, self.world_size)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@requires_nccl()
@with_comms()
def test_tracing(self, device):
def allreduce(t, pg):
return ft_c.all_reduce(t, "sum", pg)
compiled_allreduce = torch.compile(allreduce, fullgraph=True)
compiled_allreduce(torch.randn(8, device=device), self.pg)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
def test_tracing_with_fakepg(self, device=DEVICE):
exit_if_lt_x_accelerators(self.world_size)
def allreduce(t, pg):
return ft_c.all_reduce(t, "sum", pg)
compiled_allreduce = torch.compile(allreduce, fullgraph=True)
dist.init_process_group(
backend="fake",
rank=0,
world_size=8,
store=FakeStore(),
)
allreduce(torch.randn(8, device=device), pg=dist.group.WORLD)
dist.destroy_process_group()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@requires_nccl()
@with_comms()
def test_tracing_with_dce_code(self, device):
if self.world_size > 2:
return
def func(batch, group, rank):
ret = ft_c.permute_tensor(batch, [1, 0], group)
if hasattr(ret, "wait"):
ret = ret.wait()
if rank == 0:
return ret
else:
return batch * 5
compiled_func = torch.compile(func)
ret = compiled_func(
torch.ones((100,), device=device), self.process_group, self.rank
)
dist.barrier()
class TestDistributedBackendCollectivesWithWorldSize4(
TestCollectivesWithDistributedBackend
):
@property
def world_size(self):
return 4
@with_comms()
def test_permute_tensor_with_sub_group(self, device):
exit_if_lt_x_accelerators(self.world_size)
mesh_dim_names = ["dp", "tp"]
mesh_2d = dt.init_device_mesh(
device, (2, self.world_size // 2), mesh_dim_names=mesh_dim_names
)
for mesh_name in mesh_dim_names:
mesh = mesh_2d[mesh_name]
rank = mesh.get_local_rank()
# rank0: [0., 1.], rank1: [2., 3.]
send_tensor = torch.arange(2, dtype=torch.float32, device=device) + 2 * rank
recvd_tensor = ft_c.permute_tensor(send_tensor, [1, 0], group=mesh)
# rank0: [2., 3.], rank1: [0., 1.]
expected = torch.arange(2, dtype=torch.float32, device=device) + 2 * (
(rank - 1 + 2) % 2
)
self.assertEqual(
recvd_tensor,
expected,
msg=f"Expected {expected} on {self.rank=} (local_rank={rank}), "
f"but received {recvd_tensor} instead.",
)
@instantiate_parametrized_tests
@skipIfHpu
class TestFunctionalAutograd(MultiThreadedTestCase):
def setUp(self):
super().setUp()
self._spawn_threads()
@property
def world_size(self):
return 2
@parametrize("compile", [True, False])
def test_all_to_all_single(self, compile: bool = True) -> None:
group = dist.group.WORLD.group_name
t = torch.ones((self.world_size, 2), requires_grad=True)
def my_func(t: torch.Tensor, world_size: int) -> torch.Tensor:
sizes = [1] * world_size
t = t * 2
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t, sizes, sizes, group)
out = out + 0
return out
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
out = compiled(t, self.world_size)
self.assertEqual(out.shape, t.shape)
self.assertEqual(out, torch.full_like(t, 2.0))
self.assertIsNotNone(out.grad_fn)
self.assertTrue(out.requires_grad)
loss = out.sum()
loss.backward()
self.assertEqual(t.grad, torch.full_like(t, 2.0))
def test_all_to_all_single_inductor(self) -> None:
group = dist.group.WORLD.group_name
t = torch.rand((self.world_size, 2), requires_grad=True)
def my_func(t: torch.Tensor, world_size: int) -> torch.Tensor:
sizes = [1] * world_size
t = t * 10
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t, sizes, sizes, group)
out = out + 2
return out.sum()
compiled = torch.compile(my_func, fullgraph=True)
def run_with_backward():
out = compiled(t, self.world_size)
out.backward()
res, codes = run_and_get_code(run_with_backward)
for code in codes:
FileCheck().check_count(
"_c10d_functional.all_to_all_single.default", 1, exactly=True
).check_count("_c10d_functional.wait_tensor.default", 1, exactly=True).run(
code
)
self.assertIsNotNone(t.grad)
@parametrize("compile", [True, False])
def test_all_gather_tensor(self, compile: bool) -> None:
group = dist.group.WORLD.group_name
def my_func(t: torch.Tensor, dim: int) -> torch.Tensor:
assert t.requires_grad
out = ft_c.all_gather_tensor_autograd(
t * 1.0,
gather_dim=dim,
group=group,
)
out = out * 1.0
return out
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
dims_to_gather = [0, 1, 2]
for dim in dims_to_gather:
output_size = [3, 3, 3]
output_size[dim] *= self.world_size
# each rank have its own tensor, all_gather gives a bigger tensor
local_tensor = torch.ones([3, 3, 3], requires_grad=True)
gathered_tensor = compiled(local_tensor, dim)
self.assertEqual(gathered_tensor, torch.ones(output_size))
gathered_tensor.sum().backward()
self.assertEqual(
local_tensor.grad,
torch.full((3, 3, 3), fill_value=float(self.world_size)),
)
@parametrize("compile", [True, False])
def test_reduce_scatter_tensor(self, compile: bool) -> None:
group = dist.group.WORLD.group_name
def my_func(t: torch.Tensor, dim: int) -> torch.Tensor:
assert t.requires_grad
rs_tensor = (
ft_c.reduce_scatter_tensor_autograd(
input_tensor * 1.0, "sum", scatter_dim=dim, group=group
)
* 1.0
)
return rs_tensor
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
group_size = self.world_size
input_size = [3, 3]
output_size = [3, 3]
output_size[dim] *= group_size
input_tensor = torch.ones(output_size, requires_grad=True)
rs_tensor = compiled(input_tensor, dim)
res_num = 1 * group_size
self.assertEqual(rs_tensor, torch.ones(input_size) * res_num)
rs_tensor.sum().backward()
self.assertEqual(input_tensor.grad, torch.full(output_size, fill_value=1.0))
class TestFunctionalAutogradWithDistributedBackend(DistributedTestBase):
@with_comms()
def test_all_to_all_single(self, device) -> None:
group = self.pg
t = torch.ones((self.world_size, 2), requires_grad=True, device=device)
sizes = [1] * self.world_size
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t * 2, sizes, sizes, group) + 0
self.assertEqual(out.shape, t.shape)
self.assertEqual(out, torch.full_like(t, 2.0))
self.assertIsNotNone(out.grad_fn)
self.assertTrue(out.requires_grad)
loss = out.sum()
loss.backward()
self.assertEqual(t.grad, torch.full_like(t, 2.0))
# Update the supported devices in DEVICE
instantiate_device_type_tests(
TestCollectivesWithDistributedBackend, globals(), only_for=DEVICE
)
instantiate_device_type_tests(
TestDistributedBackendCollectivesWithWorldSize4, globals(), only_for=DEVICE
)
instantiate_device_type_tests(
TestFunctionalAutogradWithDistributedBackend, globals(), only_for=DEVICE
)
if __name__ == "__main__":
run_tests()