forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_control_collectives.py
214 lines (161 loc) · 7.22 KB
/
test_control_collectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Owner(s): ["oncall: distributed"]
from datetime import timedelta
from multiprocessing.pool import ThreadPool
import torch
import torch.distributed as dist
from torch.testing._internal.common_utils import run_tests, TestCase
# simple example of user code that takes the base class ControlCollectives
# and executes multiple different collectives
def simple_user_func(collectives: dist._ControlCollectives, rank: int) -> int:
timeout = timedelta(seconds=10)
# first a barrier
collectives.barrier("1", timeout, True)
# then an all_sum
out = collectives.all_sum("2", rank, timeout)
return out
class TestCollectives(TestCase):
def test_barrier(self) -> None:
store = dist.HashStore()
world_size = 2
def f(rank: int) -> None:
collectives = dist._StoreCollectives(store, rank, world_size)
collectives.barrier("foo", timedelta(seconds=10), True)
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
def test_broadcast(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(seconds=10)
def f(rank: int) -> None:
collectives = dist._StoreCollectives(store, rank, world_size)
if rank == 2:
collectives.broadcast_send("foo", b"data", timeout)
else:
out = collectives.broadcast_recv("foo", timeout)
self.assertEqual(out, b"data")
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
def test_gather(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(seconds=10)
def f(rank: int) -> None:
collectives = dist._StoreCollectives(store, rank, world_size)
if rank == 2:
out = collectives.gather_recv("foo", str(rank), timeout)
self.assertEqual(out, [b"0", b"1", b"2", b"3"])
else:
collectives.gather_send("foo", str(rank), timeout)
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
def test_scatter(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(seconds=10)
def f(rank: int) -> None:
collectives = dist._StoreCollectives(store, rank, world_size)
if rank == 2:
out = collectives.scatter_send(
"foo", [str(i) for i in range(world_size)], timeout
)
else:
out = collectives.scatter_recv("foo", timeout)
self.assertEqual(out, str(rank).encode())
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
def test_all_sum(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(seconds=10)
def f(rank: int) -> None:
collectives = dist._StoreCollectives(store, rank, world_size)
out = collectives.all_sum("foo", rank, timeout)
self.assertEqual(out, sum(range(world_size)))
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
def test_broadcast_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(Exception, "Wait timeout"):
collectives.broadcast_recv("foo", timeout)
def test_gather_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(
Exception, "gather failed -- missing ranks: 0, 2, 3"
):
collectives.gather_recv("foo", "data", timeout)
def test_scatter_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(Exception, "Wait timeout"):
collectives.scatter_recv("foo", timeout)
def test_all_gather_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(
Exception, "all_gather failed -- missing ranks: 0, 2, 3"
):
collectives.all_gather("foo", "data", timeout)
def test_barrier_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(
Exception, "barrier failed -- missing ranks: 0, 2, 3"
):
collectives.barrier("foo", timeout, True)
def test_all_sum_timeout(self) -> None:
store = dist.HashStore()
world_size = 4
timeout = timedelta(milliseconds=1)
collectives = dist._StoreCollectives(store, 1, world_size)
with self.assertRaisesRegex(
Exception, "barrier failed -- missing ranks: 0, 2, 3"
):
collectives.all_sum("foo", 1, timeout)
def test_unique(self) -> None:
store = dist.HashStore()
collectives = dist._StoreCollectives(store, 1, 1)
collectives.broadcast_send("foo", "bar")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.broadcast_send("foo", "bar")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.broadcast_recv("foo")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.gather_send("foo", "bar")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.gather_recv("foo", "asdf")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.scatter_send("foo", ["asdf"])
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.scatter_recv("foo")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.all_gather("foo", "bar")
with self.assertRaisesRegex(Exception, "Key foo has already been used"):
collectives.all_sum("foo", 2)
def test_simple_user_func(self) -> None:
store = dist.HashStore()
world_size = 4
def f(rank: int) -> None:
# user need to create child collectives
# but simple_user_func do not need to be changed for different child collectives
store_collectives = dist._StoreCollectives(store, rank, world_size)
out = simple_user_func(store_collectives, rank)
self.assertEqual(out, sum(range(world_size)))
with ThreadPool(world_size) as pool:
pool.map(f, range(world_size))
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_distributed must not have initialized CUDA context on main process"
run_tests()