forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_c10d_ucc.py
1082 lines (889 loc) · 37 KB
/
test_c10d_ucc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["oncall: distributed"]
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
if not c10d.is_available() or not c10d.is_ucc_available():
print("c10d UCC not available, skipping tests", file=sys.stderr)
sys.exit(0)
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
def simple_reduce_tests(rank, world_size):
tests = [
(
c10d.ReduceOp.SUM,
torch.tensor([rank + 1.0]),
torch.tensor([float(world_size * (world_size + 1) / 2)]),
),
(
c10d.ReduceOp.PRODUCT,
torch.tensor([rank + 1.0]),
torch.tensor([float(math.factorial(world_size))]),
),
(
c10d.ReduceOp.MIN,
torch.tensor([rank + 1.0]),
torch.tensor([1.0]),
),
(
c10d.ReduceOp.MAX,
torch.tensor([rank + 1.0]),
torch.tensor([world_size]),
),
]
# Generate tests for BAND.
# The bit that is set changes in every iteration to check
# that the output changes accordingly.
for i in range(4):
vin = rank | (1 << i)
vout = 1 << i
tests.append(
(
c10d.ReduceOp.BAND,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
# Generate tests for BOR.
# These emulate a larger world size per iteration by having every
# rank contribute multiple values that are pre-OR'ed.
for i in range(1, 5):
vin = reduce(operator.or_, [rank * i + j for j in range(i)])
vout = reduce(operator.or_, range(world_size * i))
tests.append(
(
c10d.ReduceOp.BOR,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
# Generate tests for XOR.
# These emulate a larger world size per iteration by having every
# rank contribute multiple values that are pre-XOR'ed.
for i in range(1, 5):
vin = reduce(operator.xor, [rank * i + j for j in range(i)])
vout = reduce(operator.xor, range(world_size * i))
tests.append(
(
c10d.ReduceOp.BXOR,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
return tests
class RendezvousEnvTest(TestCase):
@requires_ucc()
@retry_on_connect_failures
def test_logging_init(self):
os.environ["WORLD_SIZE"] = "1"
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = str(common.find_free_port())
os.environ["RANK"] = "0"
previous_handlers = logging.root.handlers
c10d.init_process_group(backend="ucc", init_method="env://")
current_handlers = logging.root.handlers
self.assertEqual(len(previous_handlers), len(current_handlers))
for current, previous in zip(current_handlers, previous_handlers):
self.assertEqual(current, previous)
c10d.destroy_process_group()
class TimeoutTest(test_c10d_common.AbstractTimeoutTest, TestCase):
@requires_ucc()
@retry_on_connect_failures
def test_default_store_timeout_ucc(self):
self._test_default_store_timeout("ucc")
class ProcessGroupUCCTest(MultiProcessTestCase):
def _create_process_group_ucc(self):
store = c10d.FileStore(self.file_name, self.world_size)
return c10d.ProcessGroupUCC(store, self.rank, self.world_size)
def setUp(self):
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@requires_ucc()
def test_empty_tensors(self):
pg = self._create_process_group_ucc()
xs = [torch.FloatTensor([])]
fut = pg.broadcast(xs).get_future()
fut.wait()
output = fut.value()
self.assertEqual(0, output[0].numel())
self.assertEqual(xs[0], output[0], exact_dtype=False)
# TODO: add error check testing
def _test_broadcast_basics(self, fn):
pg = self._create_process_group_ucc()
def broadcast(xs, rootRank, rootTensor):
opts = c10d.BroadcastOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
fut = pg.broadcast(xs, opts).get_future()
fut.wait()
return fut.value()
# Every rank is root once
for i in range(self.world_size):
# Run with 1 input tensor
x = fn(torch.tensor([self.rank]))
output = broadcast([x], i, 0)
self.assertEqual(torch.tensor([i]), output[0], exact_dtype=False)
# TODO: UCC currently does not support multi tensor input
# Test overloaded convenience function
x = torch.tensor([self.rank + 1.0])
fut = pg.broadcast(x, root=0).get_future()
fut.wait()
result = fut.value()
self.assertEqual(torch.tensor([1.0]), result[0])
@requires_ucc()
def test_broadcast_basics(self):
self._test_broadcast_basics(lambda t: t.clone())
# TODO: test_broadcast_basics_cuda times out locally
def _test_allreduce_basics(self, fn):
pg = self._create_process_group_ucc()
# Single input tests
tests = simple_reduce_tests(self.rank, self.world_size)
for op, input, expected in tests:
opts = c10d.AllreduceOptions()
opts.reduceOp = op
tensor = fn(input)
fut = pg.allreduce([tensor], opts).get_future()
fut.wait()
result = fut.value()
self.assertEqual(expected, result[0], exact_dtype=False)
# TODO: UCC currently does not support multi tensor input
# Test overloaded convenience function (defaults to using sum)
x = fn(torch.tensor([self.rank + 1.0]))
fut = pg.allreduce(x).get_future()
fut.wait()
result = fut.value()
self.assertEqual(
torch.tensor([float(self.world_size * (self.world_size + 1) / 2)]),
result[0],
)
@requires_ucc()
def test_allreduce_basics(self):
self._test_allreduce_basics(lambda t: t.clone())
# TODO: test_allreduce_basics_cuda times out locally
def _test_allgather_basics(self, fn):
pg = self._create_process_group_ucc()
# TODO: Run with N input tensor per rank; for now, UCC only supports single tensor input so N=1
for n in [1]:
input = [fn(torch.tensor([n * self.rank + i])) for i in range(n)]
output = [
[fn(torch.tensor([-1])) for _ in range(n * self.world_size)]
for _ in range(n)
]
expected_output = [
[fn(torch.tensor([i])) for i in range(n * self.world_size)]
for _ in range(n)
]
fut = pg.allgather(output, input).get_future()
fut.wait()
result = fut.value()
if n == 1:
result = [result]
self.assertEqual(expected_output, result)
def test_allgather_basics(self):
self._test_allgather_basics(lambda t: t.clone())
def _test_reduce_basics(self, fn):
pg = self._create_process_group_ucc()
for op, input, output in simple_reduce_tests(self.rank, self.world_size):
for root in range(self.world_size):
opts = c10d.ReduceOptions()
opts.reduceOp = op
opts.rootRank = root
tmp = fn(input)
fut = pg.reduce([tmp], opts).get_future()
fut.wait()
result = fut.value()
if root == self.rank:
self.assertEqual(output, result[0], exact_dtype=False)
@requires_ucc()
def test_reduce_basics(self):
self._test_reduce_basics(lambda t: t.clone())
# TODO: test_reduce_basics_cuda times out locally
@requires_ucc()
def test_send_recv_all_to_all(self):
pg = self._create_process_group_ucc()
# Preallocate tensors for input/output
inputs = [torch.tensor([self.rank]) for _ in range(self.world_size)]
outputs = [torch.tensor([-1]) for _ in range(self.world_size)]
# Issue sends
send_work = []
for i in range(self.world_size):
if i == self.rank:
continue
send_work.append(pg.send([inputs[i]], i, 0))
# Issue recvs
recv_work = []
for i in range(self.world_size):
if i == self.rank:
continue
recv_work.append(pg.recv([outputs[i]], i, 0))
# Wait for sends to complete
for work in send_work:
work.wait()
self.assertTrue(work.is_completed())
# Wait for recvs to complete
for work in recv_work:
work.wait()
self.assertTrue(work.is_completed())
# Test that every output other than our own contains the respective rank
for i in range(self.world_size):
if i == self.rank:
continue
self.assertEqual(torch.tensor([i]), outputs[i])
# TODO: test_barrier_implies_wait fails with numerical mismatch, will investigate later
@skip_but_pass_in_sandcastle("fails with numerical mismatch, skip for now")
@requires_ucc()
def test_barrier_implies_wait(self):
pg = self._create_process_group_ucc()
# Kick off allreduce operations
size = (100, 100)
num = 16
tensors = [torch.full(size, float(i)) for i in range(num)]
for tensor in tensors:
# Note: leak the returned work handle
pg.allreduce(tensor)
# Barrier should ensure all previous work has completed
pg.barrier().get_future().wait()
for i, tensor in enumerate(tensors):
self.assertEqual(torch.full(size, float(i * self.world_size)), tensor)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.t0 = Task()
self.t1 = Task()
self.task_unused = Task()
def task_parameters(self):
return (self.t0.p, self.t1.p, self.task_unused.p)
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
def run_and_verify_grad(model):
# Run forward
output = model(8, self.rank)
# The grads of all parameters should be None at this point.
t0_p, t1_p, task_unused_p = model.module.task_parameters()
self.assertIsNone(t0_p.grad)
self.assertIsNone(t1_p.grad)
self.assertIsNone(task_unused_p.grad)
# Run backward
output.mean().backward()
# Now locally unused parameter should have grad updated on all ranks.
# However the globally unused parameter should still have None grad.
self.assertIsNotNone(t0_p.grad)
self.assertIsNotNone(t1_p.grad)
self.assertIsNone(task_unused_p.grad)
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
GlobalLocalUnusedParamModule().cpu(),
process_group=process_group,
find_unused_parameters=True,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
run_and_verify_grad(cpu_model)
# Test on GPU
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
GlobalLocalUnusedParamModule().to(device_id),
device_ids=[device_id],
process_group=process_group,
find_unused_parameters=True,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
run_and_verify_grad(gpu_model)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad(self):
self._test_global_local_unused_params_grad()
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad_with_grad_is_view(self):
self._test_global_local_unused_params_grad(gradient_as_bucket_view=True)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad_with_static_graph(self):
self._test_global_local_unused_params_grad(static_graph=True)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_find_unused_parameters_when_unused_parameters_empty(self):
"""
An empty unused_parameters array does not imply find_unused_parameters =
false. This test makes sure that DDP allreduces unused parameters
accordingly where the forward pass in some process uses all parameters.
This unit test creates a module that uses all parameters in rank = 0, and
has unused parameters in other ranks.
"""
class FindUnusedParamModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.t0 = Task()
self.t1 = Task()
def task_parameters(self):
return (self.t0.p, self.t1.p)
def forward(self, x, rank):
return self.t1(self.t0(x)) if rank == 0 else self.t1(x)
def run_and_verify_grad(model):
# Run forward
output = model(8, self.rank)
# The grads of all parameters should be None at this point.
[self.assertIsNone(t_p.grad) for t_p in model.module.task_parameters()]
# Run backward
output.mean().backward()
# Now locally unused parameter should have grad updated on all ranks.
[self.assertIsNotNone(t_p.grad) for t_p in model.module.task_parameters()]
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
FindUnusedParamModule().cpu(),
process_group=process_group,
find_unused_parameters=True,
)
run_and_verify_grad(cpu_model)
# Test on GPU
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
FindUnusedParamModule().to(device_id),
device_ids=[device_id],
process_group=process_group,
find_unused_parameters=True,
)
run_and_verify_grad(gpu_model)
@requires_ucc()
def test_ignored_output(self):
"""
Test that the output of a model can be ignored and that there is no
implicit requirement that `backward` gets called.
"""
process_group = self._get_process_group()
class IgnoredOutput(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
model = DistributedDataParallel(
IgnoredOutput().float(),
process_group=process_group,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)])
# Run a few iterations where we ignore the output.
for _ in range(4):
output = model(input)
del output
# Run a few iterations where we use the output.
for _ in range(4):
output = model(input)
loss = criterion(output, target)
loss.backward()
@requires_ucc()
def test_ignored_output_with_unused_parameters(self):
"""
Test that the output of a model can be ignored and that there is no
implicit requirement that `backward` gets called, if not all model
parameters participated in computing the model output.
"""
process_group = self._get_process_group()
class IgnoredOutputWithUnusedParameters(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.fc3 = nn.Linear(4, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
model = DistributedDataParallel(
IgnoredOutputWithUnusedParameters().float(),
process_group=process_group,
find_unused_parameters=True,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)])
# Run a few iterations where we ignore the output.
for _ in range(4):
output = model(input)
del output
# Run a few iterations where we use the output.
for _ in range(4):
output = model(input)
loss = criterion(output, target)
loss.backward()
def _run_and_verify_sparse_gradients(self, vanilla_model, ddp_model):
mult = 2
batch_size = mult * self.world_size
criterion = nn.CrossEntropyLoss()
input = torch.randint(0, 10, [batch_size, 2])
target = torch.randint(0, 10, [batch_size])
# Run with entire batch against single process version
criterion(vanilla_model(input), target).backward()
# Run with partial batch against multi process version
partial_input = input.split(mult)[self.rank]
partial_target = target.split(mult)[self.rank]
criterion(ddp_model(partial_input), partial_target).backward()
# Check that the gradients are sparse and identical
vanilla_parameter = next(vanilla_model.parameters())
ddp_parameter = next(ddp_model.parameters())
self.assertEqual(
vanilla_parameter.grad.coalesce(), ddp_parameter.grad.coalesce()
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_save_load_checkpoint(self):
dist.init_process_group(
"ucc",
init_method=f"file://{self.file_name}",
world_size=self.world_size,
rank=self.rank,
)
class TestModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
def train_loop(model, optimizer, iterations):
for _ in range(iterations):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model_withload = TestModel().float().to(device_id)
model_withoutload = TestModel().float().to(device_id)
ddp_withload = DistributedDataParallel(
model_withload,
device_ids=[device_id],
)
ddp_withoutload = DistributedDataParallel(
model_withoutload,
device_ids=[device_id],
)
# ensure that all the three models start with the same set of parameters. By default they are randomized on construction
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
for p in model_withload.parameters():
with torch.no_grad():
p.zero_()
for p in ddp_withoutload.parameters():
with torch.no_grad():
p.zero_()
batch_size = 4
criterion = nn.CrossEntropyLoss()
optimizer_withload = torch.optim.SGD(ddp_withload.parameters(), lr=0.001)
optimizer_non_ddp_withload = torch.optim.SGD(
model_withload.parameters(), lr=0.001
)
optimizer_withoutload = torch.optim.SGD(ddp_withoutload.parameters(), lr=0.001)
input = torch.rand([batch_size, 2], dtype=torch.float).to(device_id)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# run the model for 6 iterations, with a checkpoint in the middle
train_loop(ddp_withload, optimizer_withload, 3)
# zero out parameters of both DDP and non-DDP models and reload them from the DDP state dict
checkpoint_path = tempfile.gettempdir() + "/model.checkpoint"
if self.rank == 0:
torch.save(ddp_withload.state_dict(), checkpoint_path)
dist.barrier()
map_location = {"cuda:%d" % 0: "cuda:%d" % self.rank}
ddp_state_dict = torch.load(checkpoint_path, map_location=map_location)
for model in [ddp_withload, model_withload]:
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
ddp_withload.load_state_dict(ddp_state_dict)
# the non-DDP model needs to first remove the prefix of "module." from the DDP state dict
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
ddp_state_dict, "module."
)
model_withload.load_state_dict(ddp_state_dict)
train_loop(ddp_withload, optimizer_withload, 3)
train_loop(model_withload, optimizer_non_ddp_withload, 3)
# re-run the model with the same inputs for 6 iterations with no checkpoint
train_loop(ddp_withoutload, optimizer_withoutload, 6)
for p_withload, p_withoutload, p_non_ddp_withload in zip(
ddp_withload.parameters(),
ddp_withoutload.parameters(),
model_withload.parameters(),
):
self.assertEqual(p_withload, p_withoutload)
self.assertEqual(p_non_ddp_withload, p_withoutload)
def _test_sparse_gradients(self, gradient_as_bucket_view=False):
process_group = self._get_process_group()
# Ensure initialized weights and inputs are identical across processes
torch.manual_seed(1337)
vanilla_model = SparseGradientModule()
ddp_model = DistributedDataParallel(
copy.deepcopy(vanilla_model),
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
self._run_and_verify_sparse_gradients(vanilla_model, ddp_model)
# TODO: backward pass: input tensor has to be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_sparse_gradients(self):
self._test_sparse_gradients()
# TODO: backward pass: input tensor has to be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_sparse_gradients_grad_is_view(self):
self._test_sparse_gradients(gradient_as_bucket_view=True)
@requires_ucc()
def test_ddp_comm_hook_future_passing_cpu(self):
"""
This unit test verifies whether the Future object is passed properly.
The callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
ModuleForDdpCommHook().cpu(), process_group=process_group
)
# Register DDP Communication Hook
cpu_model.register_comm_hook(None, self._simple_hook)
# check whether the grads are equal to what then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(cpu_model, 8, 2 * torch.ones(2, 2))
def _gpu_model_with_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False, state=None
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a DDP communication hook if any.
if hook is not None:
gpu_model.register_comm_hook(state, hook)
return gpu_model
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_future_passing_gpu_ucc(self):
"""
This unit test verifies whether the Future object is passed properly using ucc backend.
The hook callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Get GPU model with simple_hook registered.
gpu_model = self._gpu_model_with_ddp_comm_hook(process_group, self._simple_hook)
# check whether the grads are equal to what simple_hook's then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(gpu_model, 8, 2 * torch.ones(2, 2))
@requires_ucc()
def test_ddp_invalid_comm_hook_init(self):
"""
This unit test makes sure that register_comm_hook properly checks the format
of hook defined by user. The Python hook must be callable. This test also
checks whether bucket annotation checked properly if defined.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
with self.assertRaisesRegex(TypeError, "Communication hook must be callable."):
model.register_comm_hook(state=None, hook=1)
with self.assertRaisesRegex(
ValueError, "bucket annotation should be dist.GradBucket."
):
def comm_hook(
state: object, bucket: int
) -> torch.futures.Future[torch.Tensor]:
return torch.futures.Future()
model.register_comm_hook(state=None, hook=comm_hook)
@requires_ucc()
def test_ddp_invalid_comm_hook_return_type(self):
"""
This test checks whether return annotation checked properly if defined. It also
checks whether an internal error is thrown if return type is incorrect and user
hasn't specified any return type annotation.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
expected_err = (
"Communication hook: return annotation should be torch.futures.Future"
)
with self.assertRaisesRegex(
ValueError,
expected_err,
):
def comm_hook(state: object, bucket: dist.GradBucket) -> int:
return torch.futures.Future()
model.register_comm_hook(state=None, hook=comm_hook)
verify_ddp_error_logged(model, expected_err)
with self.assertRaisesRegex(
RuntimeError,
"callback must return a torch.futures.Future object, but got",
):
def comm_hook(state: object, bucket: dist.GradBucket):
return 1
model.register_comm_hook(state=None, hook=comm_hook)
# Run forward
output = model(8, self.rank)
# Run backward
output.mean().backward()
@requires_ucc()
def test_ddp_comm_hook_register_just_once(self):
"""
DDP communication hook can only be registered once. This test validates whether
the error is thrown properly when register_comm_hook is called more than once.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
def dummy_hook(state, bucket):
fut = torch.futures.Future()
fut.set_result([bucket.buffer()])
return fut
model.register_comm_hook(None, dummy_hook)
with self.assertRaisesRegex(
RuntimeError,
"register_comm_hook or register_builtin_comm_hook can only be called once.",
):
model.register_comm_hook(None, dummy_hook)
# TODO: backward pass: input tensor must be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_ddp_comm_hook_sparse_gradients(self):
"""
Runs "test_sparse_gradients" unit test with DDP communication hook. We define a
simple hook that does allreduce and works with ucc backend for this test.
"""
process_group = self._get_process_group()
# Ensure initialized weights and inputs are identical across processes
torch.manual_seed(1337)
vanilla_model = SparseGradientModule()
ddp_model = DistributedDataParallel(
copy.deepcopy(vanilla_model),
process_group=process_group,
)
def allreduce_hook_ucc(
state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
def div_by_world_size(fut):
# Divide the result by 2 * world_size.
return fut.wait()[0] / self.world_size
# Prepare allreduced grad bucket tensors by running an async work.
fut = process_group.allreduce([bucket.buffer()]).get_future()
return fut.then(div_by_world_size)
ddp_model.register_comm_hook(None, allreduce_hook_ucc)
self._run_and_verify_sparse_gradients(vanilla_model, ddp_model)
class CommTest(test_c10d_common.AbstractCommTest, MultiProcessTestCase):
@property
def device(self):
return "cpu"
def setUp(self):
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_sequence_num_set_default_pg_ucc(self):
self._test_sequence_num_set_default_pg(backend="ucc")
@requires_ucc()
@skip_if_lt_x_gpu(2)