forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_c10d_ops_nccl.py
1008 lines (835 loc) · 35.9 KB
/
test_c10d_ops_nccl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["oncall: distributed"]
# This test file contains positive tests for c10d with NCCL backend.
# During the test, it is expected that ProcessGroup will not be aborted, destroyed or incur fatal error.
# Please be mindful of this when adding tests here.
# If you need to add tests for group creation, abort or destroy, please add tests in test_c10d_nccl.py.
# There are two ways to launch tests in this file:
# 1. Run this file directly with `python test_c10d_ops_nccl.py`
# 2. Use multi-process launcher, e.g. `torchrun --standalone --nproc-per-node 2 test_c10d_ops_nccl.py`
import math
import os
import sys
import tempfile
import torch
import torch.distributed as c10d
if not c10d.is_available() or not c10d.is_nccl_available():
print("c10d NCCL not available, skipping tests", file=sys.stderr)
sys.exit(0)
import torch.distributed as dist
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
init_multigpu_helper,
MultiProcContinousTest,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
skip_but_pass_in_sandcastle_if,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip ASAN as torch + multiprocessing spawn have known issues", file=sys.stderr
)
sys.exit(0)
class ProcessGroupNCCLOpTest(MultiProcContinousTest):
@classmethod
def backend_str(cls) -> str:
return "nccl"
@classmethod
def opts(cls, high_priority_stream=False):
opts = c10d.ProcessGroupNCCL.Options()
opts.is_high_priority_stream = high_priority_stream
return opts
@property
def rank_to_GPU(self):
# return rank to GPU map
return init_multigpu_helper(self.world_size, "nccl")
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_empty_tensors(self):
pg = self.pg
local_device_idx = self.rank_to_GPU[self.rank][0]
xs = [torch.FloatTensor([]).cuda(local_device_idx)]
pg.broadcast(xs).wait()
self.assertEqual(0, xs[0].numel())
pg.allreduce(xs).wait()
self.assertEqual(0, xs[0].numel())
pg.reduce(xs).wait()
self.assertEqual(0, xs[0].numel())
ys = [
[
torch.FloatTensor([]).cuda(local_device_idx)
for _ in range(self.world_size)
]
]
pg.allgather(ys, xs).wait()
for y in ys[0]:
self.assertEqual(0, y.numel())
ys = [torch.FloatTensor([]).cuda(local_device_idx)]
xs = [
[
torch.FloatTensor([]).cuda(local_device_idx)
for _ in range(self.world_size)
]
]
pg.reduce_scatter(ys, xs).wait()
self.assertEqual(0, ys[0].numel())
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_broadcast_ops(self):
pg = self.pg
def broadcast(xs, rootRank, rootTensor):
opts = c10d.BroadcastOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
work = pg.broadcast(xs, opts)
work.wait()
return xs
# Every rank is root once
for i in range(self.world_size):
# Run with 1 input tensor
x = torch.tensor([self.rank]).cuda(self.rank_to_GPU[self.rank][0])
output = broadcast([x], i, 0)
self.assertEqual(torch.tensor([i]), output[0])
expected_tensor = torch.empty([i + 1, i + 1]).fill_(i + 1)
xs = [
torch.empty([i + 1, i + 1]).fill_(-1).cuda(device=device_idx)
for device_idx in self.rank_to_GPU[self.rank]
]
# test with multiple input tensors (multiple gpu in one rank)
for j in range(len(xs)):
if self.rank == i:
xs[j] = expected_tensor.cuda(device=self.rank_to_GPU[self.rank][j])
broadcast(xs, i, j)
for tensor in xs:
self.assertEqual(tensor, expected_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_sparse_allreduce_ops(self):
pg = self.pg
indices = torch.tensor([[0, 1]])
values = torch.tensor([[1, 2, 0], [4, 0, 6]])
sparse_tensor = torch.sparse_coo_tensor(indices, values, size=(2, 3)).to(
self.rank
)
# sparse allreduce call is wrapped in a try catch since the c10d API is only available in the nccl experimental branch
try:
tensor_list = [sparse_tensor]
work = pg.allreduce(tensor_list)
work.wait()
# tensor_list is a list of size 1, with the allreduce output as a dense tensor
a = torch.tensor([[2, 4, 0], [8, 0, 12]]).to(self.rank)
self.assertEqual(tensor_list[0], a)
except RuntimeError as e:
if "NCCL does not support all_reduce with sparse tensors" in str(e):
pass
else:
# Rethrow the exception if it's a different error
raise
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allreduce_ops(self):
device_count = torch.cuda.device_count()
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allreduce(tensors, op):
opts = c10d.AllreduceOptions()
opts.reduceOp = op
work = pg.allreduce(tensors, opts)
work.wait()
# Sum
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.SUM)
ndev = self.world_size
self.assertEqual(
torch.tensor([ndev * (ndev + 1) // 2]),
tensors[0],
)
# Avg (only available for NCCL 2.10+)
if torch.cuda.nccl.version() >= (2, 10, 0):
tensors = [torch.tensor([self.rank + 1.0]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.AVG)
ndev = self.world_size
self.assertEqual(
torch.tensor([ndev * (ndev + 1.0) / (2.0 * ndev)]),
tensors[0],
)
# Premul Sum
if torch.cuda.nccl.version() >= (2, 11, 1):
for dtype in torch.half, torch.float, torch.double:
for factor in (
3.0,
torch.tensor([5.0], device=local_device_id, dtype=dtype),
):
tensors = [
torch.tensor([self.rank + 1])
.cuda(local_device_id)
.to(dtype=dtype)
]
allreduce(tensors, c10d._make_nccl_premul_sum(factor))
self.assertEqual(
factor
* torch.tensor(
[self.world_size * (self.world_size + 1) / 2],
dtype=dtype,
device=local_device_id,
),
tensors[0],
)
# Product
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.PRODUCT)
self.assertEqual(torch.tensor([math.factorial(self.world_size)]), tensors[0])
# Min
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.MIN)
self.assertEqual(torch.tensor([1]), tensors[0])
# Max
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
allreduce(tensors, c10d.ReduceOp.MAX)
self.assertEqual(torch.tensor([self.world_size]), tensors[0])
for op, err in zip(
(c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR),
("ReduceOp.BAND", "ReduceOp.BOR", "ReduceOp.BXOR"),
):
with self.assertRaisesRegex(ValueError, "Cannot use " + err + " with NCCL"):
allreduce(tensors, op)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_alltoall_ops_with_cudafree_race(self):
pg = self.pg
opts = c10d.AllToAllOptions()
local_device = f"cuda:{self.rank_to_GPU[self.rank][0]}"
torch.cuda.set_device(local_device)
input = torch.rand(1000, 1000, device=local_device)
output = torch.rand(1000, 1000, device=local_device)
race_tensors = []
# create some tensors to race with alltoall collective
for _ in range(10):
tmp = []
for i in range(5):
tmp.append(torch.rand(10 ** (3 + i), device=local_device))
race_tensors.append(tmp)
for i in range(10):
race_tensors.pop()
work = pg.alltoall_base(output, input, [], [], opts)
# this triggers cudaFree
torch.cuda.empty_cache()
work.wait()
torch.cuda.synchronize(device=local_device)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allreduce_in_cudagraph(self):
pg = self.pg
local_device_idx = self.rank_to_GPU[self.rank][0]
with torch.cuda.device(local_device_idx):
xs = [torch.FloatTensor([1]).cuda(local_device_idx)]
# single warmup
pg.allreduce(xs).wait()
# 1 + 1 + ... = world_size
expected_val = self.world_size
self.assertEqual(xs[0].item(), expected_val)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
pg.allreduce(xs).wait()
# Graph capture should not change the tensor value
self.assertEqual(xs[0].item(), expected_val)
graph.replay()
expected_val *= self.world_size
graph.replay()
expected_val *= self.world_size
self.assertEqual(xs[0].item(), expected_val)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
@skipIfRocm()
def test_nccl_watchdog_cudagraph(self):
# test that the watchdog does not crash graphs with disallowed event query
pg = self.pg
rank = self.rank_to_GPU[self.rank][0]
with torch.cuda.device(rank):
for i in range(10):
xs = [torch.FloatTensor([1]).cuda(rank)]
ys = [torch.FloatTensor([4]).cuda(rank)]
for _ in range(30):
pg.allreduce(xs[0]).wait()
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
xs[0] += 0.0
pg.allreduce(xs[0]).wait()
pg.allreduce(xs[0]).wait()
pg.allreduce(xs[0]).wait()
xs[0] += 0.0
for _ in range(100):
graph.replay()
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce(xs, rootRank, rootTensor, op=None):
opts = c10d.ReduceOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
if op:
opts.reduceOp = op
work = pg.reduce(xs, opts)
work.wait()
# for every root tensor
for rt in range(self.world_size):
tensors = [torch.tensor([self.rank + 1]).cuda(local_device_id)]
reduce(tensors, rt, 0)
if self.rank == rt:
self.assertEqual(
torch.tensor([self.world_size * (self.world_size + 1) // 2]),
tensors[0],
)
else:
self.assertEqual(
torch.tensor([self.rank + 1]),
tensors[0],
)
for op, err in zip(
(c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR),
("ReduceOp.BAND", "ReduceOp.BOR", "ReduceOp.BXOR"),
):
with self.assertRaisesRegex(
ValueError, "Cannot use " + err + " with NCCL"
):
reduce(tensors, self.rank, rt, op)
# Premul sum
if torch.cuda.nccl.version() >= (2, 11, 1):
for factor in (3.0, torch.tensor([5.0], device=local_device_id)):
if isinstance(factor, torch.Tensor):
factor_ref = factor.cpu().item()
else:
factor_ref = factor
float_tensors = [
torch.tensor(
[self.rank + 1.0], device=f"cuda:{local_device_id}"
)
]
float_tensors_ref = [
torch.tensor(
[(self.rank + 1.0) * factor_ref],
device=f"cuda:{local_device_id}",
)
]
reduce(float_tensors_ref, rt, 0)
reduce(float_tensors, rt, 0, c10d._make_nccl_premul_sum(factor))
if self.rank == rt:
self.assertEqual(float_tensors_ref[0], float_tensors[0])
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
def allgather(output_ts, input_ts):
work = pg.allgather(output_ts, input_ts)
return work.wait()
tensors = [torch.empty(2, 2).fill_(2).cuda(device=i) for i in local_device_ids]
output_tensors = []
expected_output = []
output_per_gpu = (
[torch.empty(2, 2).fill_(-1)] * len(local_device_ids) * self.world_size
)
expected_per_gpu = (
[torch.empty(2, 2).fill_(2)] * len(local_device_ids) * self.world_size
)
for gpu in local_device_ids:
output_tensors.append([t.cuda(device=gpu) for t in output_per_gpu])
expected_output.append([t.cuda(device=gpu) for t in expected_per_gpu])
result = allgather(output_tensors, tensors)
# Verification
self.assertEqual(output_tensors, expected_output)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_base_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_allgather_base_basics(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# anticipate an error
with self.assertRaisesRegex(
ValueError,
"output tensor size must be equal to world_size times input tensor size",
):
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=tensor.dtype).cuda(
local_device_id
)
# fails the check because output_t is not correctly sized
allgather_base(output_t, tensor)
# anticipate an error
with self.assertRaisesRegex(
TypeError, "output tensor must have the same type as input tensor"
):
tensor = torch.tensor([self.rank], dtype=torch.float).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=torch.long).cuda(
local_device_id
)
# fails the check because the dtype is different
allgather_base(output_t, tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def gather(output_t, input_t, rootRank):
opts = c10d.GatherOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.gather(output_t, input_t, opts)
else:
work = pg.gather([], input_t, opts)
work.wait()
# init input
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([self.rank]).cuda(device_id))
# init output
output_ts = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
output_ts.append([])
for rank in range(self.world_size):
output_ts[idx].append(torch.tensor([-1]).cuda(gpu_idx))
expected = [[torch.tensor([rank]) for rank in range(self.world_size)]]
for rank in range(self.world_size):
gather(output_ts, tensors, rank)
if rank == self.rank:
self.assertEqual(expected, output_ts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_stress(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def gather(output_t, input_t, rootRank):
opts = c10d.GatherOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.gather(output_t, input_t, opts)
else:
work = pg.gather([], input_t, opts)
work.wait()
stress_length = 1000
# init input
tensors = []
for i in range(stress_length):
tensors.append([])
for device_id in local_device_ids:
tensors[i].append(torch.tensor([self.rank]).cuda(device_id))
# init output
output_ts = []
for i in range(stress_length):
output_ts.append([[] for _ in range(num_gpus)])
for idx, ls in enumerate(output_ts[i]):
gpu_idx = local_device_ids[idx]
for _ in range(self.world_size):
ls.append(torch.tensor([-1]).cuda(gpu_idx))
expected = [[torch.tensor([rank]) for rank in range(self.world_size)]]
for i in range(stress_length):
for rank in range(self.world_size):
gather(output_ts[i], tensors[i], rank)
# Verification
if rank == self.rank:
self.assertEqual(output_ts[i], expected)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_gather_checks(self):
pg = self.pg
device_id = self.rank_to_GPU[self.rank][0]
# init input
tensor = torch.tensor([self.rank]).cuda(device_id)
# init output
output_ts = []
for rank in range(self.world_size):
output_ts.append(torch.tensor([-1]).cuda(device_id))
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.GatherOptions()
opts.rootRank = -1
pg.gather([output_ts], [tensor], opts)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
pg.gather([output_ts], [tensor], 0)
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.GatherOptions()
opts.rootRank = self.world_size
pg.gather([output_ts], [tensor], opts)
with self.assertRaisesRegex(
# throws error message from dispatcher
RuntimeError,
"There were no tensor arguments to this function",
):
opts = c10d.GatherOptions()
opts.rootRank = 0
pg.gather([output_ts], [], opts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def scatter(output_t, input_t, rootRank):
opts = c10d.ScatterOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.scatter(output_t, input_t, opts)
else:
work = pg.scatter(output_t, [], opts)
work.wait()
# init output
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
scatter_list.append([])
for rank in range(self.world_size):
scatter_list[idx].append(torch.tensor([rank]).cuda(gpu_idx))
# test each rank to scatter
expected = [torch.tensor([self.rank])]
for rank in range(self.world_size):
scatter(tensors, scatter_list, rank)
self.assertEqual(expected, tensors)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_stress(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def scatter(output_t, input_t, rootRank):
opts = c10d.ScatterOptions()
opts.rootRank = rootRank
if rootRank == self.rank:
work = pg.scatter(output_t, input_t, opts)
else:
work = pg.scatter(output_t, [], opts)
work.wait()
stress_length = 1000
# init output
tensors = []
for i in range(stress_length):
tensors.append([])
for device_id in local_device_ids:
tensors[i].append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for i in range(stress_length):
scatter_list.append([[] for _ in range(num_gpus)])
for idx, ls in enumerate(scatter_list[i]):
gpu_idx = local_device_ids[idx]
for rank in range(self.world_size):
ls.append(torch.tensor([rank]).cuda(gpu_idx))
# test each rank to scatter
expected = [torch.tensor([self.rank])]
for i in range(stress_length):
for rank in range(self.world_size):
scatter(tensors[i], scatter_list[i], rank)
# Verification
self.assertEqual(tensors[i], expected)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_scatter_checks(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
# init output
tensors = []
for device_id in local_device_ids:
tensors.append(torch.tensor([-1]).cuda(device_id))
# init input
scatter_list = []
for idx in range(num_gpus):
gpu_idx = local_device_ids[idx]
scatter_list.append([])
for rank in range(self.world_size):
scatter_list[idx].append(torch.tensor([rank]).cuda(gpu_idx))
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.ScatterOptions()
opts.rootRank = -1
pg.scatter(tensors, scatter_list, opts)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
pg.scatter(tensors, scatter_list, 0)
with self.assertRaisesRegex(ValueError, "invalid root rank"):
opts = c10d.ScatterOptions()
opts.rootRank = self.world_size
pg.scatter(tensors, scatter_list, opts)
with self.assertRaisesRegex(
# throws error message from dispatcher
RuntimeError,
"There were no tensor arguments to this function",
):
opts = c10d.ScatterOptions()
opts.rootRank = 0
pg.scatter([], scatter_list, opts)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_base_basics(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce_scatter_base(output_t, input_t):
work = pg._reduce_scatter_base(output_t, input_t)
work.wait()
# anticipate an error
with self.assertRaisesRegex(
ValueError,
"input tensor must be the same size as output size times world size",
):
input_t = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=input_t.dtype).cuda(
local_device_id
)
# fails the check because output_t is not correctly sized
reduce_scatter_base(output_t, input_t)
# anticipate an error
with self.assertRaisesRegex(
TypeError, "input tensor must be the same type as the output tensor."
):
tensor = torch.tensor([self.rank], dtype=torch.float).cuda(local_device_id)
output_t = torch.empty((self.world_size + 1), dtype=torch.long).cuda(
local_device_id
)
# fails the check because the dtype is different
reduce_scatter_base(output_t, tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_ops(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
num_gpus = len(local_device_ids)
def reduce_scatter(outputs, input_lists, op):
opts = c10d.ReduceScatterOptions()
opts.reduceOp = op
work = pg.reduce_scatter(outputs, input_lists, opts)
work.wait()
output = [torch.tensor([0]).cuda(i) for i in local_device_ids]
# GPU/rank
# 0 [1], [2], [3], [4]
# 1 [2], [3], [4], [5]
# 2 [3], [4], [5], [6]
# 3 [4], [5], [6], [7]
# Sum
tensor_lists = []
input_per_gpu = []
for i in range(self.world_size):
input_per_gpu.append(torch.tensor([self.rank + i + 1]))
for gpu in local_device_ids:
tensor_lists.append([t.cuda(device=gpu) for t in input_per_gpu])
reduce_scatter(output, tensor_lists, c10d.ReduceOp.SUM)
for i in range(num_gpus):
expected = torch.tensor(
[
(1 + self.world_size) * self.world_size // 2
+ self.world_size * self.rank
]
)
self.assertEqual(expected, output[i])
# Min
reduce_scatter(output, tensor_lists, c10d.ReduceOp.MIN)
for i in range(num_gpus):
expected = torch.tensor([self.rank + 1 + i])
self.assertEqual(expected, output[i])
# Max
reduce_scatter(output, tensor_lists, c10d.ReduceOp.MAX)
for i in range(num_gpus):
expected = torch.tensor([self.rank + self.world_size + i])
self.assertEqual(expected, output[i])
# Product
reduce_scatter(output, tensor_lists, c10d.ReduceOp.PRODUCT)
# math package don't have math.perm until python 3.8, so
# we implement a naive version here.
def perm(n, k):
prod_val = n
for val in range(n - k + 1, n):
prod_val *= val
return prod_val
for i in range(num_gpus):
prod_val = perm(self.rank + self.world_size, self.world_size)
expected = torch.tensor([prod_val])
self.assertEqual(expected, output[i])
# Test the input params overridden scenarios, aka, when the input is
# a list and output is just one tensor.
# Sum
output_tensor = torch.empty_like(input_per_gpu[0][0]).cuda(self.rank)
input_list = [tensor[0].cuda(self.rank) for tensor in input_per_gpu]
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.SUM).wait()
expected = torch.tensor(
(1 + self.world_size) * self.world_size // 2 + self.world_size * self.rank
)
self.assertEqual(expected, output_tensor)
# Min
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.MIN).wait()
expected = torch.tensor(self.rank + 1)
self.assertEqual(expected, output_tensor)
# Max
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.MAX).wait()
expected = torch.tensor(self.rank + self.world_size)
self.assertEqual(expected, output_tensor)
# Product
pg.reduce_scatter(output_tensor, input_list, c10d.ReduceOp.PRODUCT).wait()
prod_val = self.rank + 1
for k in range(1, self.world_size):
prod_val = prod_val * (self.rank + 1 + k)
expected = torch.tensor(prod_val)
self.assertEqual(expected, output_tensor)
if torch.cuda.nccl.version() >= (2, 11, 1):
for factor in (3.0, torch.tensor([5.0], device=self.rank)):
if isinstance(factor, torch.Tensor):
factor_ref = factor.cpu().item()
else:
factor_ref = factor
output = [t.float() for t in output]
tensor_lists = [[t.float() for t in tl] for tl in tensor_lists]
output_ref = [t.float() for t in output]
tensor_lists_ref = [
[t.float() * factor_ref for t in tl] for tl in tensor_lists
]
reduce_scatter(output, tensor_lists, c10d._make_nccl_premul_sum(factor))
reduce_scatter(output_ref, tensor_lists_ref, c10d.ReduceOp.SUM)
self.assertEqual(output_ref, output)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_reduce_scatter_base_ops(self):
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def reduce_scatter_base(output_t, input_t):
work = pg._reduce_scatter_base(output_t, input_t)
work.wait()
# reduce_scatter_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
output_t = torch.empty([1]).cuda(local_device_id)
tensor = torch.arange(self.world_size, dtype=output_t.dtype).cuda(
local_device_id
)
reduce_scatter_base(output_t, tensor)
# Verification
self.assertEqual(output_t[0], self.rank * self.world_size)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_barrier(self):
pg = self.pg
local_device_ids = self.rank_to_GPU[self.rank]
def allreduce(tensors):
opts = c10d.AllreduceOptions()
work = pg.allreduce(tensors, opts)
return work
# Making the collective to operate on
# 1, 2, 3, 4, .... len(local_device_ids) GPUs
tensors_list = [[] for _ in range(len(local_device_ids))]
for i in range(1, len(local_device_ids) + 1):
for j in range(i):
tensors_list[i - 1].append(
torch.tensor([j + 1]).cuda(local_device_ids[j])
)
works = []
for tensors in tensors_list:
work = allreduce(tensors)
works.append(work)
# Barrier will ensure that all previous work is completed
pg.barrier().wait()
for i in range(1, len(local_device_ids) + 1):
for j in range(i):
self.assertEqual(
torch.tensor([(j + 1) * self.world_size]), tensors_list[i - 1][j]
)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv(self):
pg = self.pg
device = self.rank_to_GPU[self.rank][0]
# Generate the same random tensor
torch.manual_seed(0)
send_tensor = torch.rand(10, 10, device=device)
if self.rank == 0:
dist.send(send_tensor, 1)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, device=device)
dist.recv(recv_tensor, 0)
self.assertEqual(send_tensor, recv_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv_complex(self):
pg = self.pg
device = self.rank_to_GPU[self.rank][0]
# Generate the same random tensor
torch.manual_seed(0)
send_tensor = torch.rand(10, 10, dtype=torch.cfloat, device=device)
if self.rank == 0:
dist.send(send_tensor, 1)
if self.rank == 1:
recv_tensor = torch.rand(10, 10, dtype=torch.cfloat, device=device)
dist.recv(recv_tensor, 0)
self.assertEqual(send_tensor, recv_tensor)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_send_recv_object_list(self):
device = self.rank_to_GPU[self.rank][0]
val = 99 if self.rank == 0 else None
object_list = [val] * self.world_size
if self.rank == 0:
dist.send_object_list(object_list, 1, device=device)
if self.rank == 1:
dist.recv_object_list(object_list, 0, device=device)
self.assertEqual(object_list[0], 99)
@requires_nccl()
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "NCCL test requires 2+ GPUs")
def test_tensor_register_hook(self):
os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"] = "1"
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
# Unset env
del os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"]
if __name__ == "__main__":
if not torch.cuda.is_available():
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
rank = int(os.getenv("RANK", -1))
world_size = int(os.getenv("WORLD_SIZE", -1))
if world_size == -1: # Not set by external launcher
world_size = torch.cuda.device_count()
if rank != -1:
# Launched with torchrun or other multi-proc launchers. Directly run the test.
ProcessGroupNCCLOpTest.run_rank(rank, world_size)
else: