forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_c10d_object_collectives.py
180 lines (142 loc) · 5.37 KB
/
test_c10d_object_collectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Owner(s): ["oncall: distributed"]
import os
import sys
from functools import partial, wraps
import torch
import torch.distributed as dist
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.testing._internal.common_distributed import MultiProcessTestCase, TEST_SKIPS
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
def with_comms(func=None):
if func is None:
return partial(
with_comms,
)
@wraps(func)
def wrapper(self, *args, **kwargs):
if BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
self.dist_init()
func(self)
self.destroy_comms()
return wrapper
class TestObjectCollectives(MultiProcessTestCase):
def setUp(self):
super().setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
os.environ["BACKEND"] = BACKEND
self._spawn_processes()
@property
def device(self):
return (
torch.device("cuda", self.rank % torch.cuda.device_count())
if BACKEND == dist.Backend.NCCL
else torch.device("cpu")
)
@property
def world_size(self):
if BACKEND == dist.Backend.NCCL:
return torch.cuda.device_count()
return super().world_size
@property
def process_group(self):
return dist.group.WORLD
def destroy_comms(self):
# Wait for all ranks to reach here before starting shutdown.
dist.barrier()
dist.destroy_process_group()
def dist_init(self):
dist.init_process_group(
backend=BACKEND,
world_size=self.world_size,
rank=self.rank,
init_method=f"file://{self.file_name}",
)
# set device for nccl pg for collectives
if BACKEND == "nccl":
torch.cuda.set_device(self.rank)
@with_comms()
def test_all_gather_object(self):
output = [None] * dist.get_world_size()
dist.all_gather_object(object_list=output, obj=self.rank)
for i, v in enumerate(output):
self.assertEqual(i, v, f"rank: {self.rank}")
@with_comms()
def test_gather_object(self):
output = [None] * dist.get_world_size() if self.rank == 0 else None
dist.gather_object(obj=self.rank, object_gather_list=output)
if self.rank == 0:
for i, v in enumerate(output):
self.assertEqual(i, v, f"rank: {self.rank}")
@with_comms()
def test_send_recv_object_list(self):
val = 99 if self.rank == 0 else None
object_list = [val] * dist.get_world_size()
if self.rank == 0:
dist.send_object_list(object_list, 1)
if self.rank == 1:
dist.recv_object_list(object_list, 0)
if self.rank < 2:
self.assertEqual(99, object_list[0])
else:
self.assertEqual(None, object_list[0])
@with_comms()
def test_broadcast_object_list(self):
val = 99 if self.rank == 0 else None
object_list = [val] * dist.get_world_size()
# TODO test with broadcast_object_list's device argument
dist.broadcast_object_list(object_list=object_list)
self.assertEqual(99, object_list[0])
@with_comms()
def test_scatter_object_list(self):
input_list = list(range(dist.get_world_size())) if self.rank == 0 else None
output_list = [None]
dist.scatter_object_list(
scatter_object_output_list=output_list, scatter_object_input_list=input_list
)
self.assertEqual(self.rank, output_list[0])
# Test Object Collectives With Sub Pg
def setup_sub_pg(self):
rank = dist.get_rank()
base_rank = rank - (rank % 2)
ranks = [base_rank, base_rank + 1]
my_pg = dist.new_group(ranks, use_local_synchronization=True)
return rank, ranks, my_pg
@with_comms()
def test_subpg_scatter_object(self):
rank, ranks, my_pg = self.setup_sub_pg()
out_list = [None]
dist.scatter_object_list(out_list, ranks, src=ranks[0], group=my_pg)
self.assertEqual(rank, out_list[0])
@with_comms()
def test_subpg_all_gather_object(self):
rank, ranks, my_pg = self.setup_sub_pg()
out_list = [None] * len(ranks)
dist.all_gather_object(out_list, rank, group=my_pg)
self.assertEqual(ranks, out_list)
@with_comms()
def test_subpg_gather_object(self):
rank, ranks, my_pg = self.setup_sub_pg()
out_list = [None] * len(ranks) if rank == ranks[0] else None
dist.gather_object(rank, out_list, dst=ranks[0], group=my_pg)
if rank == ranks[0]:
self.assertEqual(ranks, out_list)
@with_comms()
def test_subpg_broadcast_object(self):
rank, ranks, my_pg = self.setup_sub_pg()
out_list = [None]
if rank == ranks[0]:
out_list[0] = rank
dist.broadcast_object_list(out_list, src=ranks[0], group=my_pg)
self.assertEqual(ranks[0], out_list[0])
if __name__ == "__main__":
run_tests()