-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_value_net_pytorch.py
125 lines (102 loc) · 4.1 KB
/
policy_value_net_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
# @Time : 2019/3/22 16:16
# @Author : yx
# @Desc : ==============================================
import torch
import torch.nn as nn
import torch.nn.functional as F
from config import *
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class ResidualBlock(nn.Module):
def __init__(self, n_f):
super(ResidualBlock, self).__init__()
self.residual = nn.Sequential(
nn.Conv2d(n_f, n_f, 3, 1, 1), # 输入和输出的feature 大小不变
nn.BatchNorm2d(n_f),
nn.ReLU(),
nn.Conv2d(n_f, n_f, 3, 1, 1),
nn.BatchNorm2d(n_f),
)
def forward(self, x):
x = x + self.residual(x)
x = F.relu(x)
return x
class Network(nn.Module):
def __init__(self, board_size, n_res=3, n_f=128):
super(Network, self).__init__()
nf_p = 32 # 原论文为2 extra last layer filters trick
nf_v = 16 # 原论文为1
# 网络结构
common_module_lst = nn.ModuleList([
nn.Conv2d(4, n_f, 3, 1, 1),
nn.BatchNorm2d(n_f),
nn.ReLU()
])
common_module_lst.extend([ResidualBlock(n_f) for _ in range(n_res)])
self.body = nn.Sequential(*common_module_lst)
self.head_p = nn.Sequential(
nn.Conv2d(n_f, nf_p, 1, 1), # 输入和输出的feature 大小不变
nn.BatchNorm2d(nf_p),
nn.ReLU(),
Flatten(),
nn.Linear(nf_p * board_size * board_size, board_size * board_size),
nn.LogSoftmax(dim=-1)
)
self.head_v = nn.Sequential(
nn.Conv2d(n_f, nf_v, 1, 1), # # 输入和输出的feature 大小不变
nn.BatchNorm2d(nf_v),
nn.ReLU(),
Flatten(),
nn.Linear(nf_v * board_size * board_size, 256),
nn.ReLU(),
nn.Linear(256, 1),
nn.Tanh()
)
def forward(self, x):
x = self.body(x)
p = self.head_p(x)
v = self.head_v(x)
return p, v
class PolicyValueNet:
def __init__(self, board_size, n_res=RES_BLOCK_NUM, n_f=FILTER_NUM, init_lr=LR, weight_decay=L2_WEIGHT_DECAY,
device_str='cuda:0'):
self.device = torch.device(device_str)
self.policy_value_net = Network(board_size, n_res, n_f).to(self.device)
self.trainer = torch.optim.Adam(self.policy_value_net.parameters(),
lr=init_lr, betas=[0.7, 0.99],
weight_decay=weight_decay)
self.l2_loss = nn.MSELoss()
def get_policy_value(self, state):
x = torch.tensor(state).float().unsqueeze(0).to(self.device)
self.policy_value_net.eval()
log_act_probs, z = self.policy_value_net(x)
self.policy_value_net.train()
pv = log_act_probs.exp()
return pv.detach().cpu().numpy(), z.detach().cpu().numpy()
def train_step(self, states, probs, winners, lr):
ss = torch.tensor(states).float().to(self.device)
ps = torch.tensor(probs).float().to(self.device)
ws = torch.tensor(winners).unsqueeze(-1).float().to(self.device)
# 设置学习率
for param_group in self.trainer.param_groups:
param_group['lr'] = lr
# loss
log_act_probs, z = self.policy_value_net(ss)
loss = self.l2_loss(z, ws) - (ps * log_act_probs).sum(1).mean()
# update
self.trainer.zero_grad()
loss.backward()
self.trainer.step()
log_act_probs_new, z_new = self.policy_value_net(ss)
kl = (log_act_probs.exp() * (log_act_probs - log_act_probs_new)).sum(1).mean()
entropy = -torch.mean(torch.sum(torch.exp(log_act_probs_new) * log_act_probs_new, 1))
return loss.item(), kl.item(), entropy.item()
def save_model(self, model_path):
torch.save(self.policy_value_net.state_dict(), model_path)
return model_path
def restore_model(self, model_path):
self.policy_value_net.load_state_dict(torch.load(model_path))