-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathIDS_WGAN.py
136 lines (116 loc) · 4.77 KB
/
IDS_WGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import pandas as pd
import torch as th
from torch.autograd import Variable as V
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from preprocessing import preprocess,create_batch2
from model.model_class import Blackbox_IDS,Generator,Discriminator
import matplotlib.pyplot as plt
import adabound
def compute_gradient_penalty(D, normal_t, attack_t):
alpha = th.Tensor(np.random.random((normal_t.shape[0], 1)))
between_n_a = (alpha * normal_t + ((1 - alpha) * attack_t)).requires_grad_(True)
d_between_n_a = D(between_n_a)
adv = V(th.Tensor(normal_t.shape[0], 1).fill_(1.0), requires_grad=False)
gradients = autograd.grad(
outputs=d_between_n_a,
inputs=between_n_a,
grad_outputs=adv,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
data = pd.read_csv("dataset/half_GAN_KDDTrain+.csv")
train_data,raw_attack,normal,true_label = preprocess(data)
BATCH_SIZE = 256 # Batch size
CRITIC_ITERS = 5 # For WGAN and WGAN-GP, number of critic iters per gen iter
LAMBDA = 10 # Gradient penalty lambda hyperparameter
MAX_EPOCH = 100 # How many generator iterations to train for
D_G_INPUT_DIM = len(train_data.columns)
G_OUTPUT_DIM = len(train_data.columns)
D_OUTPUT_DIM = 1
CLAMP = 0.01
# read parameters of IDS
ids_model = Blackbox_IDS(D_G_INPUT_DIM,2)
param = th.load('save_model/IDS.pth')
ids_model.load_state_dict(param)
#read model
generator = Generator(D_G_INPUT_DIM,G_OUTPUT_DIM)
discriminator = Discriminator(D_G_INPUT_DIM,D_OUTPUT_DIM)
optimizer_G = optim.RMSprop(generator.parameters(), lr=0.0001)
optimizer_D = optim.RMSprop(discriminator.parameters(), lr=0.0001)
batch_attack = create_batch2(raw_attack,BATCH_SIZE)
d_losses,g_losses = [],[]
ids_model.eval()
generator.train()
discriminator.train()
cnt = -5
print("IDSGAN start training")
print("-"*100)
for epoch in range(MAX_EPOCH):
batch_normal = create_batch2(normal,BATCH_SIZE)
run_g_loss = 0.
run_d_loss = 0.
c=0
for bn in batch_normal:
normal_b = th.Tensor(bn)
# Train Generator
for p in discriminator.parameters():
p.requires_grad = False
optimizer_G.zero_grad()
z = V(th.Tensor(raw_attack[np.random.randint(0,len(raw_attack),BATCH_SIZE)]+ np.random.uniform(0,1,(BATCH_SIZE,D_G_INPUT_DIM))))
adversarial_attack = generator(z)
D_pred= discriminator(adversarial_attack)
g_loss = -th.mean(D_pred)
g_loss.backward()
optimizer_G.step()
run_g_loss += g_loss.item()
# Train Discreminator
for p in discriminator.parameters():
p.requires_grad = True
for c in range(CRITIC_ITERS):
optimizer_D.zero_grad()
for p in discriminator.parameters():
p.data.clamp_(-CLAMP, CLAMP)
z = V(th.Tensor(raw_attack[np.random.randint(0,len(raw_attack),BATCH_SIZE)] + np.random.uniform(0,1,(BATCH_SIZE,D_G_INPUT_DIM))))
adversarial_attack = generator(z).detach()
ids_input = th.cat((adversarial_attack,normal_b))
l = list(range(len(ids_input)))
np.random.shuffle(l)
ids_input = V(th.Tensor(ids_input[l]))
ids_pred = ids_model(ids_input)
ids_pred_lable = th.argmax(nn.Sigmoid()(ids_pred),dim = 1).detach().numpy()
pred_normal = ids_input.numpy()[ids_pred_lable==0]
pred_attack = ids_input.numpy()[ids_pred_lable==1]
print(len(pred_normal))
if len(pred_attack) == 0:
cnt += 1
break
D_noraml = discriminator(V(th.Tensor(pred_normal)))
D_attack= discriminator(V(th.Tensor(pred_attack)))
loss_normal = th.mean(D_noraml)
loss_attack = th.mean(D_attack)
gradient_penalty = compute_gradient_penalty(discriminator, normal_b.data, adversarial_attack.data)
d_loss = loss_attack - loss_normal #+ LAMBDA * gradient_penalty
d_loss.backward()
optimizer_D.step()
run_d_loss += d_loss.item()
d_losses.append(run_d_loss/CRITIC_ITERS)
g_losses.append(run_g_loss)
print(f"{epoch} : {run_g_loss} \t {run_d_loss/CRITIC_ITERS}")
if cnt >= 100:
print("Not exist predicted attack traffic")
break
print("IDSGAN finish training")
th.save(generator.state_dict(), 'save_model/generator.pth')
th.save(discriminator.state_dict(), 'save_model/discreminator.pth')
plt.plot(d_losses,label = "D_loss")
plt.plot(g_losses, label = "G_loss")
plt.legend()
plt.show()