forked from MODFLOW-ORG/modflow6-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex-gwt-mt3dms-p06.py
563 lines (484 loc) · 15.6 KB
/
ex-gwt-mt3dms-p06.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# ## Concentration at an Injection/Extraction Well, Comparison of MODFLOW 6 transport with MT3DMS
#
# The purpose of this script is to (1) recreate the example problems that were first
# described in the 1999 MT3DMS report, and (2) compare MF6-GWT solutions to the
# established MT3DMS solutions.
#
# Ten example problems appear in the 1999 MT3DMS manual, starting on page 130. This
# notebook demonstrates example 6 from the list below:
#
# 1. One-Dimensional Transport in a Uniform Flow Field
# 2. One-Dimensional Transport with Nonlinear or Nonequilibrium Sorption
# 3. Two-Dimensional Transport in a Uniform Flow Field
# 4. Two-Dimensional Transport in a Diagonal Flow Field
# 5. Two-Dimensional Transport in a Radial Flow Field
# 6. _Concentration at an Injection/Extraction Well_
# 7. Three-Dimensional Transport in a Uniform Flow Field
# 8. Two-Dimensional, Vertical Transport in a Heterogeneous Aquifer
# 9. Two-Dimensional Application Example
# 10. Three-Dimensional Field Case Study
# ### Initial setup
#
# Import dependencies, define the example name and workspace, and read settings from environment variables.
# +
import os
import pathlib as pl
from pprint import pformat
import flopy
import matplotlib.pyplot as plt
import numpy as np
from flopy.plot.styles import styles
from modflow_devtools.misc import get_env, timed
# Settings from environment variable
write = get_env("WRITE", True)
run = get_env("RUN", True)
plot = get_env("PLOT", True)
plot_show = get_env("PLOT_SHOW", True)
plot_save = get_env("PLOT_SAVE", True)
# Example name and base workspace
workspace = pl.Path("../examples")
example_name = "ex-gwt-mt3dms-p06"
# -
# ### Define parameters
#
# Define model units, parameters and other settings.
# +
# Model units
length_units = "feet"
time_units = "days"
# Model parameters
nlay = 1 # Number of layers
nrow = 31 # Number of rows
ncol = 31 # Number of columns
delr = 900.0 # Column width ($ft$)
delc = 900.0 # Row width ($ft$)
delz = 20.0 # Layer thickness ($ft$)
top = 0.0 # Top of the model ($ft$)
prsity = 0.35 # Porosity
dum1 = 2.5 # Length of the injection period ($years$)
dum2 = 7.5 # Length of the extraction period ($years$)
k11 = 432.0 # Horizontal hydraulic conductivity ($ft/d$)
qwell = 1.0 # Volumetric injection rate ($ft^3/d$)
cwell = 100.0 # Relative concentration of injected water ($\%$)
al = 100.0 # Longitudinal dispersivity ($ft$)
trpt = 1.0 # Ratio of transverse to longitudinal dispersitivity
# Additional model input
perlen = [912.5, 2737.5]
nper = len(perlen)
nstp = [365, 1095]
tsmult = [1.0, 1.0]
k11 = 0.005 * 86400 # established above, but explicitly writing out its origin here
sconc = 0.0
c0 = 0.0
dt0 = 56.25
dmcoef = 0
ath1 = al * trpt
botm = [top - delz] # Model geometry
k33 = k11 # Vertical hydraulic conductivity ($m/d$)
icelltype = 0
mixelm = -1
strt = np.zeros((nlay, nrow, ncol), dtype=float)
# Active model domain
ibound_mf2k5 = np.ones((nlay, nrow, ncol), dtype=int) * -1
ibound_mf2k5[:, 1 : nrow - 1, 1 : ncol - 1] = 1
idomain = np.ones((nlay, nrow, ncol), dtype=int)
icbund = 1
# Boundary conditions
# MF2K5 pumping info:
qwell = 86400.0
welspd = {
0: [[0, 15, 15, qwell]], # Well pumping info for MF2K5
1: [[0, 15, 15, -qwell]],
}
cwell = 100.0
spd = {
0: [0, 15, 15, cwell, 2], # Well pupming info for MT3DMS
1: [0, 15, 15, 0.0, 2],
}
# MF6 pumping information
# (k, i, j), flow, conc
spd_mf6 = {0: [[(0, 15, 15), qwell, cwell]], 1: [[(0, 15, 15), -qwell, 0.0]]}
# MF6 constant head boundaries:
chdspd = []
# Loop through the left & right sides.
for i in np.arange(nrow):
chdspd.append([(0, i, 0), strt[0, i, 0]])
chdspd.append([(0, i, ncol - 1), strt[0, i, ncol - 1]])
# Loop through the top & bottom while omitting the corner cells
for j in np.arange(1, ncol - 1):
chdspd.append([(0, 0, j), strt[0, 0, j]])
chdspd.append([(0, nrow - 1, j), strt[0, nrow - 1, j]])
chdspd = {0: chdspd}
# Solver settings
nouter, ninner = 100, 300
hclose, rclose, relax = 1e-6, 1e-6, 1.0
percel = 1.0 # HMOC parameters
itrack = 3
wd = 0.5
dceps = 1.0e-5
nplane = 1
npl = 0
nph = 16
npmin = 2
npmax = 32
dchmoc = 1.0e-3
nlsink = nplane
npsink = nph
# Time discretization
tdis_rc = []
tdis_rc.append((perlen, nstp, 1.0))
# -
# ### Model setup
#
# Define functions to build models, write input files, and run the simulation.
# +
def build_models(sim_name, mixelm=0, silent=False):
mt3d_ws = os.path.join(workspace, sim_name, "mt3d")
modelname_mf = "p06-mf"
# Instantiate the MODFLOW model
mf = flopy.modflow.Modflow(
modelname=modelname_mf, model_ws=mt3d_ws, exe_name="mf2005"
)
# Instantiate discretization package
# units: itmuni=4 (days), lenuni=2 (m)
flopy.modflow.ModflowDis(
mf,
nlay=nlay,
nrow=nrow,
ncol=ncol,
delr=delr,
delc=delc,
top=top,
botm=botm,
nper=nper,
nstp=nstp,
perlen=perlen,
itmuni=4,
lenuni=1,
)
# Instantiate basic package
flopy.modflow.ModflowBas(mf, ibound=ibound_mf2k5, strt=strt)
# Instantiate layer property flow package
flopy.modflow.ModflowLpf(mf, hk=k11, laytyp=icelltype)
# Instantiate well package
flopy.modflow.ModflowWel(mf, stress_period_data=welspd)
# Instantiate solver package
flopy.modflow.ModflowSip(mf)
# Instantiate link mass transport package (for writing linker file)
flopy.modflow.ModflowLmt(mf)
# Transport
modelname_mt = "p06-mt"
mt = flopy.mt3d.Mt3dms(
modelname=modelname_mt,
model_ws=mt3d_ws,
exe_name="mt3dusgs",
modflowmodel=mf,
)
# Instantiate basic transport package
flopy.mt3d.Mt3dBtn(
mt,
icbund=icbund,
prsity=prsity,
sconc=sconc,
nper=nper,
perlen=perlen,
dt0=dt0,
obs=[(0, 15, 15)],
)
# Instatiate the advection package
flopy.mt3d.Mt3dAdv(
mt,
mixelm=mixelm,
dceps=dceps,
nplane=nplane,
npl=npl,
nph=nph,
npmin=npmin,
npmax=npmax,
nlsink=nlsink,
npsink=npsink,
percel=percel,
itrack=itrack,
wd=wd,
)
# Instantiate the dispersion package
flopy.mt3d.Mt3dDsp(mt, al=al, trpt=trpt, dmcoef=dmcoef)
# Instantiate the source/sink mixing package
flopy.mt3d.Mt3dSsm(mt, stress_period_data=spd)
# Instantiate the GCG solver in MT3DMS
flopy.mt3d.Mt3dGcg(mt)
# MODFLOW 6
name = "p06-mf6"
gwfname = "gwf-" + name
sim_ws = os.path.join(workspace, sim_name)
sim = flopy.mf6.MFSimulation(sim_name=sim_name, sim_ws=sim_ws, exe_name="mf6")
# Instantiating MODFLOW 6 time discretization
tdis_rc = []
for i in range(nper):
tdis_rc.append((perlen[i], nstp[i], tsmult[i]))
flopy.mf6.ModflowTdis(sim, nper=nper, perioddata=tdis_rc, time_units=time_units)
# Instantiating MODFLOW 6 groundwater flow model
gwf = flopy.mf6.ModflowGwf(
sim,
modelname=gwfname,
save_flows=True,
model_nam_file=f"{gwfname}.nam",
)
# Instantiating MODFLOW 6 solver for flow model
imsgwf = flopy.mf6.ModflowIms(
sim,
print_option="SUMMARY",
outer_dvclose=hclose,
outer_maximum=nouter,
under_relaxation="NONE",
inner_maximum=ninner,
inner_dvclose=hclose,
rcloserecord=rclose,
linear_acceleration="CG",
scaling_method="NONE",
reordering_method="NONE",
relaxation_factor=relax,
filename=f"{gwfname}.ims",
)
sim.register_ims_package(imsgwf, [gwf.name])
# Instantiating MODFLOW 6 discretization package
flopy.mf6.ModflowGwfdis(
gwf,
length_units=length_units,
nlay=nlay,
nrow=nrow,
ncol=ncol,
delr=delr,
delc=delc,
top=top,
botm=botm,
idomain=idomain,
filename=f"{gwfname}.dis",
)
# Instantiating MODFLOW 6 node-property flow package
flopy.mf6.ModflowGwfnpf(
gwf,
save_flows=False,
icelltype=icelltype,
k=k11,
k33=k33,
save_specific_discharge=True,
filename=f"{gwfname}.npf",
)
# Instantiating MODFLOW 6 storage package (steady flow conditions, so no actual storage, using to print values in .lst file)
flopy.mf6.ModflowGwfsto(gwf, ss=0, sy=0, filename=f"{gwfname}.sto")
# Instantiating MODFLOW 6 initial conditions package for flow model
flopy.mf6.ModflowGwfic(gwf, strt=strt, filename=f"{gwfname}.ic")
# Instantiating MODFLOW 6 constant head package
flopy.mf6.ModflowGwfchd(
gwf,
maxbound=len(chdspd),
stress_period_data=chdspd,
save_flows=False,
pname="CHD-1",
filename=f"{gwfname}.chd",
)
# Instantiate the wel package
flopy.mf6.ModflowGwfwel(
gwf,
print_input=True,
print_flows=True,
stress_period_data=spd_mf6,
save_flows=False,
auxiliary="CONCENTRATION",
pname="WEL-1",
filename=f"{gwfname}.wel",
)
# Instantiating MODFLOW 6 output control package for flow model
flopy.mf6.ModflowGwfoc(
gwf,
head_filerecord=f"{gwfname}.hds",
budget_filerecord=f"{gwfname}.bud",
headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")],
saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")],
printrecord=[("HEAD", "LAST"), ("BUDGET", "LAST")],
)
# Instantiating MODFLOW 6 groundwater transport package
gwtname = "gwt_" + name
gwt = flopy.mf6.MFModel(
sim,
model_type="gwt6",
modelname=gwtname,
model_nam_file=f"{gwtname}.nam",
)
gwt.name_file.save_flows = True
# create iterative model solution and register the gwt model with it
imsgwt = flopy.mf6.ModflowIms(
sim,
print_option="SUMMARY",
outer_dvclose=hclose,
outer_maximum=nouter,
under_relaxation="NONE",
inner_maximum=ninner,
inner_dvclose=hclose,
rcloserecord=rclose,
linear_acceleration="BICGSTAB",
scaling_method="NONE",
reordering_method="NONE",
relaxation_factor=relax,
filename=f"{gwtname}.ims",
)
sim.register_ims_package(imsgwt, [gwt.name])
# Instantiating MODFLOW 6 transport discretization package
flopy.mf6.ModflowGwtdis(
gwt,
nlay=nlay,
nrow=nrow,
ncol=ncol,
delr=delr,
delc=delc,
top=top,
botm=botm,
idomain=idomain,
filename=f"{gwtname}.dis",
)
# Instantiating MODFLOW 6 transport initial concentrations
flopy.mf6.ModflowGwtic(gwt, strt=sconc, filename=f"{gwtname}.ic")
# Instantiating MODFLOW 6 transport advection package
if mixelm >= 0:
scheme = "UPSTREAM"
elif mixelm == -1:
scheme = "TVD"
else:
raise Exception()
flopy.mf6.ModflowGwtadv(gwt, scheme=scheme, filename=f"{gwtname}.adv")
# Instantiating MODFLOW 6 transport dispersion package
if al != 0:
flopy.mf6.ModflowGwtdsp(
gwt,
xt3d_off=True,
alh=al,
ath1=ath1,
filename=f"{gwtname}.dsp",
)
# Instantiating MODFLOW 6 transport mass storage package (formerly "reaction" package in MT3DMS)
flopy.mf6.ModflowGwtmst(
gwt,
porosity=prsity,
first_order_decay=False,
decay=None,
decay_sorbed=None,
sorption=None,
bulk_density=None,
distcoef=None,
filename=f"{gwtname}.mst",
)
# Instantiating MODFLOW 6 transport source-sink mixing package
sourcerecarray = [("WEL-1", "AUX", "CONCENTRATION")]
flopy.mf6.ModflowGwtssm(gwt, sources=sourcerecarray, filename=f"{gwtname}.ssm")
# Instantiating MODFLOW 6 transport output control package
flopy.mf6.ModflowGwtoc(
gwt,
budget_filerecord=f"{gwtname}.cbc",
concentration_filerecord=f"{gwtname}.ucn",
concentrationprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")],
saverecord=[("CONCENTRATION", "LAST"), ("BUDGET", "LAST")],
printrecord=[("CONCENTRATION", "LAST"), ("BUDGET", "LAST")],
)
# Instantiate observation package (for transport)
obslist = [["bckgrnd_cn", "concentration", (0, 15, 15)]]
obsdict = {f"{gwtname}.obs.csv": obslist}
obs = flopy.mf6.ModflowUtlobs(gwt, print_input=False, continuous=obsdict)
# Instantiating MODFLOW 6 flow-transport exchange mechanism
flopy.mf6.ModflowGwfgwt(
sim,
exgtype="GWF6-GWT6",
exgmnamea=gwfname,
exgmnameb=gwtname,
filename=f"{name}.gwfgwt",
)
return mf, mt, sim
def write_models(mf2k5, mt3d, sim, silent=True):
mf2k5.write_input()
mt3d.write_input()
sim.write_simulation(silent=silent)
@timed
def run_models(mf2k5, mt3d, sim, silent=True):
success, buff = mf2k5.run_model(silent=silent, report=True)
assert success, pformat(buff)
success, buff = mt3d.run_model(
silent=silent, normal_msg="Program completed", report=True
)
assert success, pformat(buff)
success, buff = sim.run_simulation(silent=silent, report=True)
assert success, pformat(buff)
# -
# ### Plotting results
#
# Define functions to plot model results.
# +
# Figure properties
figure_size = (6, 4.5)
def plot_results(mt3d, mf6, idx, ax=None):
mt3d_out_path = mt3d.model_ws
mf6_out_path = mf6.simulation_data.mfpath.get_sim_path()
mf6.simulation_data.mfpath.get_sim_path()
# Get the MT3DMS observation output file
fname = os.path.join(mt3d_out_path, "MT3D001.OBS")
cvt = mt3d.load_obs(fname) if os.path.isfile(fname) else None
# Get the MODFLOW 6 concentration observation output file
fname = os.path.join(mf6_out_path, list(mf6.model_names)[1] + ".obs.csv")
mf6cobs = flopy.utils.Mf6Obs(fname).data
# Create figure for scenario
with styles.USGSPlot():
sim_name = mf6.name
plt.rcParams["lines.dashed_pattern"] = [5.0, 5.0]
if ax is None:
fig = plt.figure(figsize=figure_size, dpi=300, tight_layout=True)
ax = fig.add_subplot(1, 1, 1)
x = cvt["time"] / 365.0
y = cvt["(1, 16, 16)"]
# Pare down the list length to clean plot
x_pare = x[::20]
y_pare = y[::20]
ax.plot(x_pare, y_pare, label="Upstream FD", marker="^")
# Add MF6 output
x_mf6 = mf6cobs["totim"] / 365.0
y_mf6 = mf6cobs["BCKGRND_CN"]
x_mf6_pare = x_mf6[::20]
y_mf6_pare = y_mf6[::20]
ax.plot(
x_mf6_pare,
y_mf6_pare,
label="MODFLOW 6",
marker="x",
linestyle=":",
)
plt.xlim(0, 10)
plt.ylim(0, 100.0)
plt.xlabel("Time, in years")
plt.ylabel("Normalized Concentration, in percent")
plt.legend()
title = "Calculated Concentration at an Injection/Pumping Well"
letter = chr(ord("@") + idx + 1)
styles.heading(letter=letter, heading=title)
if plot_show:
plt.show()
if plot_save:
fpth = os.path.join(
"..",
"figures",
f"{sim_name}.png",
)
fig.savefig(fpth)
# -
# ### Running the example
#
# Define and invoke a function to run the example scenario, then plot results.
# +
def scenario(idx, silent=True):
mf2k5, mt3d, sim = build_models(example_name, mixelm=mixelm)
if write:
write_models(mf2k5, mt3d, sim, silent=silent)
if run:
run_models(mf2k5, mt3d, sim, silent=silent)
if plot:
plot_results(mt3d, sim, idx)
# Compares the standard finite difference solutions between MT3D and MF6
scenario(0)
# -