forked from nvpro-samples/vk_video_samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVulkanVideoProcessor.cpp
762 lines (659 loc) · 30.2 KB
/
VulkanVideoProcessor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*
* Copyright 2020 NVIDIA Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <iostream>
#include <mutex>
#include <queue>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <string>
#include <vector>
#include <fstream>
#include <inttypes.h>
#include "VkCodecUtils/Helpers.h"
#include "VkCodecUtils/VulkanDeviceContext.h"
#include "VkVideoCore/VulkanVideoCapabilities.h"
#include "VulkanVideoProcessor.h"
#include "vulkan_interfaces.h"
#include "nvidia_utils/vulkan/ycbcrvkinfo.h"
#include "crcgenerator.h"
inline void CheckInputFile(const char* szInFilePath)
{
std::ifstream fpIn(szInFilePath, std::ios::in | std::ios::binary);
if (fpIn.fail()) {
std::ostringstream err;
err << "Unable to open input file: " << szInFilePath << std::endl;
throw std::invalid_argument(err.str());
}
}
int32_t VulkanVideoProcessor::Initialize(const VulkanDeviceContext* vkDevCtx,
ProgramConfig& programConfig)
{
const char* filePath = programConfig.videoFileName.c_str();
int32_t videoQueueIndx = programConfig.queueId;
const char* outputFileName = (programConfig.outputFileName.size() == 0) ?
nullptr : programConfig.outputFileName.c_str();
const VkVideoCodecOperationFlagBitsKHR forceCodecType = programConfig.forceParserType;
const bool enableStreamDemuxing = (programConfig.enableStreamDemuxing == 1);
const int32_t defaultWidth = programConfig.initialWidth;
const int32_t defaultHeight = programConfig.initialHeight;
const int32_t defaultBitDepth = programConfig.initialBitdepth;
const uint32_t loopCount = programConfig.loopCount;
const uint32_t startFrame = 0;
const int32_t maxFrameCount = programConfig.maxFrameCount;
const int32_t numDecodeImagesInFlight = std::max(programConfig.numDecodeImagesInFlight, 4);
const int32_t numDecodeImagesToPreallocate = programConfig.numDecodeImagesToPreallocate;
const int32_t numBitstreamBuffersToPreallocate = std::max(programConfig.numBitstreamBuffersToPreallocate, 4);
const bool enableHwLoadBalancing = programConfig.enableHwLoadBalancing;
const bool enablePostProcessFilter = (programConfig.enablePostProcessFilter >= 0);
const bool enableDisplayPresent = (programConfig.noPresent == 0);
const VulkanFilterYuvCompute::FilterType postProcessFilterType = enablePostProcessFilter ?
(VulkanFilterYuvCompute::FilterType)programConfig.enablePostProcessFilter :
VulkanFilterYuvCompute::YCBCRCOPY;
const bool verbose = false;
if (vkDevCtx->GetVideoDecodeQueue(videoQueueIndx) == VkQueue()) {
std::cerr << "videoQueueIndx is out of bounds: " << videoQueueIndx <<
" Max decode queues: " << vkDevCtx->GetVideoDecodeNumQueues() << std::endl;
assert(!"Invalid Video Queue");
return -1;
}
Deinit();
m_vkDevCtx = vkDevCtx;
CheckInputFile(filePath);
VkResult result = VideoStreamDemuxer::Create(filePath,
forceCodecType,
enableStreamDemuxing,
defaultWidth,
defaultHeight,
defaultBitDepth,
m_videoStreamDemuxer);
if (result != VK_SUCCESS) {
return -result;
}
m_usesStreamDemuxer = m_videoStreamDemuxer->IsStreamDemuxerEnabled();
m_usesFramePreparser = m_videoStreamDemuxer->HasFramePreparser();
if (verbose) {
m_videoStreamDemuxer->DumpStreamParameters();
}
result = VulkanVideoFrameBuffer::Create(vkDevCtx, m_vkVideoFrameBuffer);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
fprintf(stderr, "\nERROR: Create VulkanVideoFrameBuffer result: 0x%x\n", result);
}
FILE* outFile = m_frameToFile.AttachFile(outputFileName);
if ((outputFileName != nullptr) && (outFile == nullptr)) {
fprintf( stderr, "Error opening the output file %s", outputFileName);
return -1;
}
uint32_t enableDecoderFeatures = 0;
if (outFile != nullptr) {
enableDecoderFeatures |= VkVideoDecoder::ENABLE_LINEAR_OUTPUT;
}
if (enableHwLoadBalancing) {
enableDecoderFeatures |= VkVideoDecoder::ENABLE_HW_LOAD_BALANCING;
}
if (enablePostProcessFilter) {
enableDecoderFeatures |= VkVideoDecoder::ENABLE_POST_PROCESS_FILTER;
}
if (enableDisplayPresent) {
enableDecoderFeatures |= VkVideoDecoder::ENABLE_GRAPHICS_TEXTURE_SAMPLING;
}
result = VkVideoDecoder::Create(vkDevCtx,
m_vkVideoFrameBuffer,
videoQueueIndx,
enableDecoderFeatures,
postProcessFilterType,
numDecodeImagesInFlight,
numDecodeImagesToPreallocate,
numBitstreamBuffersToPreallocate,
m_vkVideoDecoder);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
fprintf(stderr, "\nERROR: Create VkVideoDecoder result: 0x%x\n", result);
}
VkVideoCoreProfile videoProfile(m_videoStreamDemuxer->GetVideoCodec(),
m_videoStreamDemuxer->GetChromaSubsampling(),
m_videoStreamDemuxer->GetLumaBitDepth(),
m_videoStreamDemuxer->GetChromaBitDepth(),
m_videoStreamDemuxer->GetProfileIdc());
if (!VulkanVideoCapabilities::IsCodecTypeSupported(vkDevCtx,
vkDevCtx->GetVideoDecodeQueueFamilyIdx(),
m_videoStreamDemuxer->GetVideoCodec())) {
std::cout << "*** The video codec " << VkVideoCoreProfile::CodecToName(m_videoStreamDemuxer->GetVideoCodec()) << " is not supported! ***" << std::endl;
assert(!"The video codec is not supported");
return -1;
}
VkVideoCapabilitiesKHR videoCapabilities;
VkVideoDecodeCapabilitiesKHR videoDecodeCapabilities;
result = VulkanVideoCapabilities::GetVideoDecodeCapabilities(m_vkDevCtx, videoProfile,
videoCapabilities,
videoDecodeCapabilities);
if (result != VK_SUCCESS) {
std::cout << "*** Could not get Video Capabilities :" << result << " ***" << std::endl;
assert(!"Could not get Video Capabilities!");
return -result;
}
const uint32_t defaultMinBufferSize = 2 * 1024 * 1024; // 2MB
result = CreateParser(filePath,
m_videoStreamDemuxer->GetVideoCodec(),
defaultMinBufferSize,
(uint32_t)videoCapabilities.minBitstreamBufferOffsetAlignment,
(uint32_t)videoCapabilities.minBitstreamBufferSizeAlignment);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
fprintf(stderr, "\nERROR: CreateParser() result: 0x%x\n", result);
}
m_loopCount = loopCount;
m_startFrame = startFrame;
m_maxFrameCount = maxFrameCount;
return 0;
}
VkResult VulkanVideoProcessor::Create(const ProgramConfig& settings, const VulkanDeviceContext* vkDevCtx,
VkSharedBaseObj<VulkanVideoProcessor>& vulkanVideoProcessor)
{
VkSharedBaseObj<VulkanVideoProcessor> videoProcessor(new VulkanVideoProcessor(settings, vkDevCtx));
if (videoProcessor) {
vulkanVideoProcessor = videoProcessor;
return VK_SUCCESS;
}
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkFormat VulkanVideoProcessor::GetFrameImageFormat(int32_t* pWidth, int32_t* pHeight, int32_t* pBitDepth) const
{
VkFormat frameImageFormat = VK_FORMAT_UNDEFINED;
if (m_videoStreamDemuxer) {
if (m_videoStreamDemuxer->GetBitDepth() == 8) {
frameImageFormat = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
} else if (m_videoStreamDemuxer->GetBitDepth() == 10) {
frameImageFormat = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16;
} else if (m_videoStreamDemuxer->GetBitDepth() == 12) {
frameImageFormat = VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16;
} else {
assert(0);
}
if (pWidth) {
*pWidth = GetWidth();
}
if (pHeight) {
*pHeight = GetHeight();
}
if (pBitDepth) {
*pBitDepth = GetBitDepth();
}
}
return frameImageFormat;
}
int32_t VulkanVideoProcessor::GetWidth() const
{
return m_videoStreamDemuxer->GetWidth();
}
int32_t VulkanVideoProcessor::GetHeight() const
{
return m_videoStreamDemuxer->GetHeight();
}
int32_t VulkanVideoProcessor::GetBitDepth() const
{
return m_videoStreamDemuxer->GetBitDepth();
}
void VulkanVideoProcessor::Deinit()
{
m_vkParser = nullptr;
m_vkVideoDecoder = nullptr;
m_vkVideoFrameBuffer = nullptr;
m_videoStreamDemuxer = nullptr;
}
void VulkanVideoProcessor::DumpVideoFormat(const VkParserDetectedVideoFormat* videoFormat, bool dumpData)
{
if (dumpData) {
std::cout << "Display Area : " << std::endl
<< "\tLeft : " << videoFormat->display_area.left << std::endl
<< "\tRight : " << videoFormat->display_area.right << std::endl
<< "\tTop : " << videoFormat->display_area.top << std::endl
<< "\tBottom : " << videoFormat->display_area.bottom << std::endl;
}
if (dumpData) {
std::cout << "Geometry : " << std::endl
<< "\tCoded Width : " << videoFormat->coded_width << std::endl
<< "\tDisplayed Width : " << videoFormat->display_area.right - videoFormat->display_area.left << std::endl
<< "\tCoded Height : " << videoFormat->coded_height << std::endl
<< "\tDisplayed Height : " << videoFormat->display_area.bottom - videoFormat->display_area.top << std::endl;
}
const char* pCodec = VkVideoCoreProfile::CodecToName(videoFormat->codec);
if (dumpData) {
std::cout << "Codec : " << pCodec << std::endl;
}
/* These below token numbers are based on "chroma_format_idc" from the spec. */
/* Also, mind the separate_colour_plane_flag, as well. */
static const char* nvVideoChromaFormat[] = {
nullptr,
"Monochrome",
"420",
nullptr,
"422",
nullptr,
nullptr,
nullptr,
"444",
};
assert(videoFormat->chromaSubsampling < sizeof(nvVideoChromaFormat)/sizeof(nvVideoChromaFormat[0]));
assert(nvVideoChromaFormat[videoFormat->chromaSubsampling] != nullptr);
const char* pVideoChromaFormat = nvVideoChromaFormat[videoFormat->chromaSubsampling];
if (dumpData) {
std::cout << "VideoChromaFormat : " << pVideoChromaFormat << std::endl;
}
static const char* VideoFormat[] = {
// Definitions for video_format
"Component",
"PAL",
"NTSC",
"SECAM",
"MAC",
"Unspecified",
"Reserved6",
"Reserved7",
};
assert(videoFormat->video_signal_description.video_format < sizeof(VideoFormat)/sizeof(VideoFormat[0]));
const char* pVideoFormat = VideoFormat[videoFormat->video_signal_description.video_format];
if (dumpData) {
std::cout << "VideoFormat : " << pVideoFormat << std::endl;
}
const char* ColorPrimaries[] = {
// Definitions for color_primaries
"Forbidden",
"BT709",
"Unspecified",
"Reserved",
"BT470M",
"BT470BG",
"SMPTE170M",
"SMPTE240M",
"GenericFilm",
"BT2020",
};
assert(videoFormat->video_signal_description.color_primaries < sizeof(ColorPrimaries)/sizeof(ColorPrimaries[0]));
const char* pColorPrimaries = ColorPrimaries[videoFormat->video_signal_description.color_primaries];
if (dumpData) {
std::cout << "ColorPrimaries : " << pColorPrimaries << std::endl;
}
const char* TransferCharacteristics[] = {
"Forbidden",
"BT709",
"Unspecified",
"Reserved",
"BT470M",
"BT470BG",
"SMPTE170M",
"SMPTE240M",
"Linear",
"Log100",
"Log316",
"IEC61966_2_4",
"BT1361",
"IEC61966_2_1",
"BT2020",
"BT2020_2",
"ST2084",
"ST428_1",
};
assert(videoFormat->video_signal_description.transfer_characteristics < sizeof(TransferCharacteristics)/sizeof(TransferCharacteristics[0]));
const char* pTransferCharacteristics = TransferCharacteristics[videoFormat->video_signal_description.transfer_characteristics];
if (dumpData) {
std::cout << "TransferCharacteristics : " << pTransferCharacteristics << std::endl;
}
const char* MatrixCoefficients[] = {
"Forbidden",
"BT709",
"Unspecified",
"Reserved",
"FCC",
"BT470BG",
"SMPTE170M",
"SMPTE240M",
"YCgCo",
"BT2020_NCL",
"BT2020_CL",
};
assert(videoFormat->video_signal_description.matrix_coefficients < sizeof(MatrixCoefficients)/sizeof(MatrixCoefficients[0]));
const char* pMatrixCoefficients = MatrixCoefficients[videoFormat->video_signal_description.matrix_coefficients];
if (dumpData) {
std::cout << "MatrixCoefficients : " << pMatrixCoefficients << std::endl;
}
}
const VkMpFormatInfo* YcbcrVkFormatInfo(const VkFormat format);
size_t ConvertFrameToNv12(const VulkanDeviceContext *vkDevCtx, int32_t frameWidth, int32_t frameHeight,
VkSharedBaseObj<VkImageResource>& imageResource,
uint8_t* pOutBuffer, const VkMpFormatInfo* mpInfo)
{
size_t outputBufferSize = 0;
VkDevice device = imageResource->GetDevice();
VkImage srcImage = imageResource->GetImage ();
VkSharedBaseObj<VulkanDeviceMemoryImpl> srcImageDeviceMemory(imageResource->GetMemory());
// Map the image and read the image data.
VkDeviceSize imageOffset = imageResource->GetImageDeviceMemoryOffset();
VkDeviceSize maxSize = 0;
const uint8_t* readImagePtr = srcImageDeviceMemory->GetReadOnlyDataPtr(imageOffset, maxSize);
assert(readImagePtr != nullptr);
int32_t secondaryPlaneHeight = frameHeight;
int32_t imageHeight = frameHeight;
bool isUnnormalizedRgba = false;
if (mpInfo && (mpInfo->planesLayout.layout == YCBCR_SINGLE_PLANE_UNNORMALIZED) && !(mpInfo->planesLayout.disjoint)) {
isUnnormalizedRgba = true;
}
if (mpInfo && mpInfo->planesLayout.secondaryPlaneSubsampledY) {
secondaryPlaneHeight /= 2;
}
VkImageSubresource subResource = {};
VkSubresourceLayout layouts[3];
memset(layouts, 0x00, sizeof(layouts));
if (mpInfo && !isUnnormalizedRgba) {
switch (mpInfo->planesLayout.layout) {
case YCBCR_SINGLE_PLANE_UNNORMALIZED:
case YCBCR_SINGLE_PLANE_INTERLEAVED:
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_0_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[0]);
break;
case YCBCR_SEMI_PLANAR_CBCR_INTERLEAVED:
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_0_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[0]);
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_1_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[1]);
break;
case YCBCR_PLANAR_CBCR_STRIDE_INTERLEAVED:
case YCBCR_PLANAR_CBCR_BLOCK_JOINED:
case YCBCR_PLANAR_STRIDE_PADDED:
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_0_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[0]);
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_1_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[1]);
subResource.aspectMask = VK_IMAGE_ASPECT_PLANE_2_BIT;
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[2]);
break;
default:
assert(0);
}
} else {
vkDevCtx->GetImageSubresourceLayout(device, srcImage, &subResource, &layouts[0]);
}
// Treat all non 8bpp formats as 16bpp for output to prevent any loss.
uint32_t bytesPerPixel = 1;
if (mpInfo->planesLayout.bpp != YCBCRA_8BPP) {
bytesPerPixel = 2;
}
uint32_t numPlanes = 3;
VkSubresourceLayout yuvPlaneLayouts[3] = {};
yuvPlaneLayouts[0].offset = 0;
yuvPlaneLayouts[0].rowPitch = frameWidth * bytesPerPixel;
yuvPlaneLayouts[1].offset = yuvPlaneLayouts[0].rowPitch * frameHeight;
yuvPlaneLayouts[1].rowPitch = frameWidth * bytesPerPixel;
if (mpInfo && mpInfo->planesLayout.secondaryPlaneSubsampledX) {
yuvPlaneLayouts[1].rowPitch /= 2;
}
yuvPlaneLayouts[2].offset = yuvPlaneLayouts[1].offset + (yuvPlaneLayouts[1].rowPitch * secondaryPlaneHeight);
yuvPlaneLayouts[2].rowPitch = frameWidth * bytesPerPixel;
if (mpInfo && mpInfo->planesLayout.secondaryPlaneSubsampledX) {
yuvPlaneLayouts[2].rowPitch /= 2;
}
// Copy the luma plane, always assume the 422 or 444 formats and src CbCr always is interleaved (shares the same plane).
uint32_t numCompatiblePlanes = 1;
for (uint32_t plane = 0; plane < numCompatiblePlanes; plane++) {
const uint8_t* pSrc = readImagePtr + layouts[plane].offset;
uint8_t* pDst = pOutBuffer + yuvPlaneLayouts[plane].offset;
for (int height = 0; height < imageHeight; height++) {
memcpy(pDst, pSrc, (size_t)yuvPlaneLayouts[plane].rowPitch);
pDst += (size_t)yuvPlaneLayouts[plane].rowPitch;
pSrc += (size_t)layouts[plane].rowPitch;
}
}
// 9+ bpp is output as 16bpp yuv.
for (uint32_t plane = numCompatiblePlanes; plane < numPlanes; plane++) {
uint32_t srcPlane = std::min(plane, mpInfo->planesLayout.numberOfExtraPlanes);
uint8_t* pDst = pOutBuffer + yuvPlaneLayouts[plane].offset;
for (int height = 0; height < secondaryPlaneHeight; height++) {
const uint8_t* pSrc;
if (srcPlane != plane) {
pSrc = readImagePtr + layouts[srcPlane].offset + ((plane - 1) * bytesPerPixel) + (layouts[srcPlane].rowPitch * height);
} else {
pSrc = readImagePtr + layouts[srcPlane].offset + (layouts[srcPlane].rowPitch * height);
}
for (VkDeviceSize width = 0; width < (yuvPlaneLayouts[plane].rowPitch / bytesPerPixel); width++) {
memcpy(pDst, pSrc, bytesPerPixel);
pDst += bytesPerPixel;
pSrc += 2 * bytesPerPixel;
}
}
}
outputBufferSize += ((size_t)yuvPlaneLayouts[0].rowPitch * imageHeight);
if (mpInfo->planesLayout.numberOfExtraPlanes >= 1) {
outputBufferSize += ((size_t)yuvPlaneLayouts[1].rowPitch * secondaryPlaneHeight);
outputBufferSize += ((size_t)yuvPlaneLayouts[2].rowPitch * secondaryPlaneHeight);
}
return outputBufferSize;
}
size_t VulkanVideoProcessor::OutputFrameToFile(VulkanDecodedFrame* pFrame)
{
if (!m_frameToFile) {
return (size_t)-1;
}
assert(pFrame != nullptr);
VkSharedBaseObj<VkImageResourceView> imageResourceView;
pFrame->imageViews[VulkanDecodedFrame::IMAGE_VIEW_TYPE_LINEAR].GetImageResourceView(imageResourceView);
assert(!!imageResourceView);
assert(pFrame->pictureIndex != -1);
VkSharedBaseObj<VkImageResource> imageResource = imageResourceView->GetImageResource();
uint8_t* pOutputBuffer = m_frameToFile.EnsureAllocation(m_vkDevCtx, imageResource);
assert(pOutputBuffer != nullptr);
// Needed allocation size can shrink, but may never grow. Frames will be allocated for maximum resolution upfront.
assert((pFrame->displayWidth >= 0) && (pFrame->displayHeight >= 0));
// Wait for decoder and copy engine to be done with this frame.
WaitAndGetStatus(m_vkDevCtx,
*m_vkDevCtx,
pFrame->frameCompleteFence,
pFrame->queryPool,
pFrame->startQueryId,
pFrame->pictureIndex, false, "frameCompleteFence");
// Convert frame to linear image format and write it to file.
VkFormat format = imageResource->GetImageCreateInfo().format;
const VkMpFormatInfo* mpInfo = YcbcrVkFormatInfo(format);
size_t usedBufferSize = ConvertFrameToNv12(m_vkDevCtx, pFrame->displayWidth, pFrame->displayHeight, imageResource, pOutputBuffer, mpInfo);
// Output a crc for this frame.
if (m_settings.outputcrcPerFrame != 0) {
fprintf(m_settings.crcOutputFile, "CRC Frame[%" PRId64 "]:", pFrame->displayOrder);
size_t crcCount = m_settings.crcInitValue.size();
for (size_t i = 0; i < crcCount; i += 1) {
uint32_t frameCrc = m_settings.crcInitValue[i];
getCRC(&frameCrc, pOutputBuffer, usedBufferSize, Crc32Table);
fprintf(m_settings.crcOutputFile, "0x%08X ", frameCrc);
}
fprintf(m_settings.crcOutputFile, "\n");
if (m_settings.crcOutputFile != stdout) {
fflush(m_settings.crcOutputFile);
}
}
if ((m_settings.outputcrc != 0) && (m_settings.crcOutput != nullptr)) {
size_t crcCount = m_settings.crcInitValue.size();
for (size_t i = 0; i < crcCount; i += 1) {
getCRC(&(m_settings.crcOutput[i]), pOutputBuffer, usedBufferSize, Crc32Table);
}
}
// Write image to file.
if (m_settings.outputy4m != 0) {
return m_frameToFile.WriteFrameToFileY4M(0, usedBufferSize, pFrame->displayWidth, pFrame->displayHeight, mpInfo);
} else {
return m_frameToFile.WriteDataToFile(0, usedBufferSize);
}
}
void VulkanVideoProcessor::Restart(void)
{
m_videoStreamDemuxer->Rewind();
m_videoFrameNum = false;
m_currentBitstreamOffset = 0;
}
bool VulkanVideoProcessor::StreamCompleted()
{
if (--m_loopCount > 0) {
std::cout << "Restarting video stream with loop number " << (m_loopCount + 1) << std::endl;
// Reload the file stream
Restart();
return false;
} else {
std::cout << "End of Video Stream with status " << VK_SUCCESS << std::endl;
return true;
}
}
int32_t VulkanVideoProcessor::ParserProcessNextDataChunk()
{
if (m_videoStreamsCompleted) {
return -1;
}
int32_t retValue = 0;
int64_t bitstreamChunkSize = 0;
size_t bitstreamBytesConsumed = 0;
const uint8_t* pBitstreamData = nullptr;
bool requiresPartialParsing = false;
if (m_usesFramePreparser || m_usesStreamDemuxer) {
bitstreamChunkSize = m_videoStreamDemuxer->DemuxFrame(&pBitstreamData);
assert(bitstreamBytesConsumed <= (size_t)std::numeric_limits<int32_t>::max());
retValue = (int32_t)bitstreamChunkSize;
} else {
bitstreamChunkSize = m_videoStreamDemuxer->ReadBitstreamData(&pBitstreamData, m_currentBitstreamOffset);
requiresPartialParsing = true;
}
const bool bitstreamHasMoreData = ((bitstreamChunkSize > 0) && (pBitstreamData != nullptr));
if (bitstreamHasMoreData) {
assert((uint64_t)bitstreamChunkSize < (uint64_t)std::numeric_limits<size_t>::max());
VkResult parserStatus = ParseVideoStreamData(pBitstreamData, (size_t)bitstreamChunkSize,
&bitstreamBytesConsumed,
requiresPartialParsing);
if (parserStatus != VK_SUCCESS) {
m_videoStreamsCompleted = true;
std::cerr << "Parser: end of Video Stream with status " << parserStatus << std::endl;
retValue = -1;
} else {
retValue = (int32_t)bitstreamBytesConsumed;
}
assert(bitstreamBytesConsumed <= (size_t)std::numeric_limits<int32_t>::max());
m_currentBitstreamOffset += bitstreamBytesConsumed;
} else {
// Call the parser one last time with zero buffer to flush the display queue.
ParseVideoStreamData(nullptr, 0, &bitstreamBytesConsumed, requiresPartialParsing);
m_videoStreamsCompleted = StreamCompleted();
retValue = 0;
}
return retValue;
}
int32_t VulkanVideoProcessor::GetNextFrame(VulkanDecodedFrame* pFrame, bool* endOfStream)
{
// The below call to DequeueDecodedPicture allows returning the next frame without parsing of the stream.
// Parsing is only done when there are no more frames in the queue.
int32_t framesInQueue = m_vkVideoFrameBuffer->DequeueDecodedPicture(pFrame);
// Loop until a frame (or more) is parsed and added to the queue.
while ((framesInQueue == 0) && !m_videoStreamsCompleted) {
ParserProcessNextDataChunk();
framesInQueue = m_vkVideoFrameBuffer->DequeueDecodedPicture(pFrame);
}
if (framesInQueue) {
if (m_videoFrameNum == 0) {
DumpVideoFormat(m_vkVideoDecoder->GetVideoFormatInfo(), true);
}
if (m_frameToFile) {
OutputFrameToFile(pFrame);
}
m_videoFrameNum++;
}
if ((m_maxFrameCount != -1) && (m_videoFrameNum >= (uint32_t)m_maxFrameCount)) {
// Tell the FrameProcessor we're done after this frame is drawn.
std::cout << "Number of video frames " << m_videoFrameNum
<< " of max frame number " << m_maxFrameCount << std::endl;
m_videoStreamsCompleted = StreamCompleted();
*endOfStream = m_videoStreamsCompleted;
return -1;
}
*endOfStream = m_videoStreamsCompleted;
if ((framesInQueue == 0) && m_videoStreamsCompleted) {
return -1;
}
return 1;
}
int32_t VulkanVideoProcessor::ReleaseFrame(VulkanDecodedFrame* pDisplayedFrame)
{
if (pDisplayedFrame->pictureIndex != -1) {
DecodedFrameRelease decodedFramesRelease = { pDisplayedFrame->pictureIndex };
DecodedFrameRelease* decodedFramesReleasePtr = &decodedFramesRelease;
pDisplayedFrame->pictureIndex = -1;
decodedFramesRelease.decodeOrder = pDisplayedFrame->decodeOrder;
decodedFramesRelease.displayOrder = pDisplayedFrame->displayOrder;
decodedFramesRelease.hasConsummerSignalFence = pDisplayedFrame->hasConsummerSignalFence;
decodedFramesRelease.hasConsummerSignalSemaphore = pDisplayedFrame->hasConsummerSignalSemaphore;
decodedFramesRelease.timestamp = 0;
return m_vkVideoFrameBuffer->ReleaseDisplayedPicture(&decodedFramesReleasePtr, 1);
}
return -1;
}
VkResult VulkanVideoProcessor::CreateParser(const char*,
VkVideoCodecOperationFlagBitsKHR vkCodecType,
uint32_t defaultMinBufferSize,
uint32_t bufferOffsetAlignment,
uint32_t bufferSizeAlignment)
{
static const VkExtensionProperties h264StdExtensionVersion = { VK_STD_VULKAN_VIDEO_CODEC_H264_DECODE_EXTENSION_NAME, VK_STD_VULKAN_VIDEO_CODEC_H264_DECODE_SPEC_VERSION };
static const VkExtensionProperties h265StdExtensionVersion = { VK_STD_VULKAN_VIDEO_CODEC_H265_DECODE_EXTENSION_NAME, VK_STD_VULKAN_VIDEO_CODEC_H265_DECODE_SPEC_VERSION };
static const VkExtensionProperties av1StdExtensionVersion = { VK_STD_VULKAN_VIDEO_CODEC_AV1_DECODE_EXTENSION_NAME, VK_STD_VULKAN_VIDEO_CODEC_AV1_DECODE_SPEC_VERSION };
const VkExtensionProperties* pStdExtensionVersion = NULL;
if (vkCodecType == VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR) {
pStdExtensionVersion = &h264StdExtensionVersion;
} else if (vkCodecType == VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR) {
pStdExtensionVersion = &h265StdExtensionVersion;
} else if (vkCodecType == VK_VIDEO_CODEC_OPERATION_DECODE_AV1_BIT_KHR) {
pStdExtensionVersion = &av1StdExtensionVersion;
} else {
assert(!"Unsupported Codec Type");
return VK_ERROR_FORMAT_NOT_SUPPORTED;
}
VkSharedBaseObj<IVulkanVideoDecoderHandler> decoderHandler(m_vkVideoDecoder);
VkSharedBaseObj<IVulkanVideoFrameBufferParserCb> videoFrameBufferCb(m_vkVideoFrameBuffer);
return vulkanCreateVideoParser(decoderHandler,
videoFrameBufferCb,
vkCodecType,
pStdExtensionVersion,
1, // maxNumDecodeSurfaces - currently ignored
1, // maxNumDpbSurfaces - currently ignored
defaultMinBufferSize,
bufferOffsetAlignment,
bufferSizeAlignment,
0, // clockRate - default 0 = 10Mhz
m_vkParser);
}
VkResult VulkanVideoProcessor::ParseVideoStreamData(const uint8_t* pData, size_t size,
size_t *pnVideoBytes, bool doPartialParsing,
uint32_t flags, int64_t timestamp) {
if (!m_vkParser) {
assert(!"Parser not initialized!");
return VK_ERROR_INITIALIZATION_FAILED;
}
VkParserSourceDataPacket packet = { 0 };
packet.payload = pData;
packet.payload_size = size;
packet.flags = flags;
if (timestamp) {
packet.flags |= VK_PARSER_PKT_TIMESTAMP;
}
packet.timestamp = timestamp;
if (!pData || size == 0) {
packet.flags |= VK_PARSER_PKT_ENDOFSTREAM;
}
return m_vkParser->ParseVideoData(&packet, pnVideoBytes, doPartialParsing);
}