-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsafetyDictionary.py
75 lines (61 loc) · 3.03 KB
/
safetyDictionary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import pandas as pd
import numberResidents
def safetyDictionary(url):
numberOfResidents = numberResidents.numberResidents()
# URL = {'gwałty':"https://www.dane.gov.pl/media/resources/20180521/postepowaniawszczete-zgwalcenie.csv",
# 'morderstwa':"https://www.dane.gov.pl/media/resources/20180521/postepowaniawszczete-zabojstwo.csv",
# 'kradzieże':"https://www.dane.gov.pl/media/resources/20180521/postepowaniawszczete-rozbojnicze.csv"}
Woj = {}
Woj["KWP Kraków"] = 'Malopolskie'
Woj["KWP Rzeszów"] = 'Podkarpackie'
Woj["KWP Lublin"] = 'Lubelskie'
Woj["KWP Bia³ystok"] = 'Podlaskie'
Woj["KWP Bydgoszcz"] = 'Kujawsko-pomorskie'
Woj["KWP Gdañsk"] = 'Pomorskie'
Woj["KWP Szczecin"] = 'Zachodnio-pomorskie'
Woj["KWP Wroc³aw"] = 'Dolnoslaskie'
Woj["KWP Opole"] = 'Opolskie'
Woj["KWP Katowice"] = 'Slaskie'
Woj["KWP Olsztyn"] = 'Warminsko-mazurskie'
Woj["KWP Kielce"] = 'Swietokrzyskie'
Woj["KSP Warszawa"] = 'Mazowieckie'
Woj["KWP z/s w Radomiu"] ='Mazowieckie'
Woj["KWP Gorzów Wielkpolski"] = 'Lubuskie'
Woj["KWP Poznañ"] = 'Wielkopolskie'
Woj["KWP £ód"] = 'Lodzkie'
wojTable = ['Dolnoslaskie', 'Kujawsko-pomorskie', 'Lubelskie', 'Lubuskie', 'Lodzkie', 'Malopolskie', 'Mazowieckie',
'Opolskie', 'Podkarpackie',
'Podlaskie', 'Pomorskie', 'Slaskie', 'Swietokrzyskie', 'Warminsko-mazurskie', 'Wielkopolskie',
'Zachodnio-pomorskie']
# nazwa wojewodztwa = wojTable[liczba//2-1]
F = ['murder', 'rape', 'theft', 'drugs', 'battery']
retDictionary = {}
for woj in wojTable:
retDictionary[woj]={'murder':0,'rape':0,'theft':0, 'drugs':0, 'battery':0}
retDictionary['normal']={'murder':0,'rape':0,'theft':0, 'drugs':0, 'battery':0}
tab = ["KWP Kraków", "KWP Rzeszów", "KWP Lublin", "KWP Bia³ystok", "KWP Bydgoszcz", "KWP Gdañsk", "KWP Szczecin",
"KWP Wroc³aw", "KWP Opole", "KWP Katowice",
"KWP Olsztyn", "KWP Kielce", "KSP Warszawa", "KWP z/s w Radomiu", "KWP Gorzów Wielkpolski", "KWP Poznañ",
"KWP £ód"]
for arg in F:
df = pd.read_csv(url[arg], header=None, encoding="latin1", error_bad_lines=False, sep=";")
# print(arg)
for x, y, z in zip(df[df.columns[0]], df[df.columns[1]], df[df.columns[2]]):
if x in tab and int(str(y)) > 2015:
retDictionary[Woj[x]][arg] -= int(z.replace(" ", ""))
#print(retDictionary)
for x in retDictionary:
if x!='normal':
for y in retDictionary[x]:
retDictionary[x][y] = retDictionary[x][y] * (numberOfResidents['All'] / float(numberOfResidents[x]))
for arg in F:
maxi = 0
for j in retDictionary:
for k in F:
if k == arg and retDictionary[j][k] < maxi:
maxi = retDictionary[j][k]
retDictionary['normal'][arg] = maxi
return retDictionary
if __name__ == '__main__':
from getDataUrl import *
print(safetyDictionary(getUrlDict()['safety']))