-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessor.py
631 lines (535 loc) · 25 KB
/
Processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import re, sys, time, random
from collections import OrderedDict
from pathlib import Path
from typing import Callable, Generator, List, Tuple
from tqdm import tqdm
from rich.table import Table
from rich.console import Console
from rich.progress import track
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from models.unet import *
from models.SeqFeedNet import *
from utils.transforms import *
from utils.evaluate.losses import *
from models.unet import UNetVgg16 as BackBone
from models.SeqFeedNet import SeqFeedNet as Model
from utils.ResultOperator import ResultOperator
from utils.data_process import CDNet2014Dataset
from utils.data_process import get_data_LoadersAndSet, DatasetConfig
from utils.transforms import RandomCrop, CustomCompose, IterativeCustomCompose
from utils.evaluate.losses import IOULoss4CDNet2014 as Loss
from utils.evaluate.accuracy import calculate_acc_metrics as acc_func
from utils.evaluate.eval_utils import (
ACC_NAMES,
LOSS_NAMES,
ORDER_NAMES,
EvalMeasure,
BasicRecord,
SummaryRecord,
OneEpochVideosAccumulator,
)
from submodules.UsefulFileTools.WordOperator import str_format
from submodules.UsefulFileTools.FileOperator import check2create_dir
PROJECT_DIR = str(Path(__file__).resolve())
def get_device(id: int = 0):
device = 'cpu'
if torch.cuda.is_available():
device = f'cuda:{id}'
else:
print('CUDA device not found, use CPU!!')
return torch.device(device)
class Processor:
def __init__(
self,
model: nn.Module | Model,
optimizer: optim.Optimizer,
train_transforms: IterativeCustomCompose,
test_transforms: IterativeCustomCompose = None,
acc_func: Callable = acc_func,
loss_func: Callable = Loss(),
eval_measure: EvalMeasure | nn.Module = EvalMeasure(0.5, Loss(reduction='none')),
device: str = get_device(),
) -> None:
self.model = model
self.optimizer = optimizer
self.train_transforms = train_transforms
self.test_transforms = test_transforms
self.acc_func = acc_func
self.loss_func = loss_func
self.eval_measure = eval_measure
self.device = device
self.console = Console()
self.epoch = 0
self.best_epoch = 0
self.best_records = torch.zeros(len(ORDER_NAMES), dtype=torch.float32) * 0
self.loss_idx = -len(LOSS_NAMES)
self.best_records[self.loss_idx :] = 1e5
self.summaries: List[SummaryRecord] = [] # [train_summary, val_summary, test_summary]
def create_measure_table(self):
measure_table = Table(show_header=True, header_style='bold magenta')
measure_table.add_column(f"e{self.epoch:03}", style='dim')
[measure_table.add_column(name, justify='right') for name in ORDER_NAMES]
return measure_table
def fix_testing_size(self, dataset: CDNet2014Dataset | Dataset, idx: int):
if idx == len(dataset.data_infos):
return
hw = dataset.data_infos[idx][1].ROI_mask.shape[-2:]
if str(self.model.fp_model) == 'UNetVgg16':
h, w = int(hw[0] // 16 * 16), int(hw[1] // 16 * 16) # for fix the UNet concat dimension problem
else:
h, w = int(hw[0]), int(hw[1])
dataset.transforms_cpu.transforms[0] = transforms.Resize((h, w), antialias=True)
self.test_transforms.target_size = (h, w)
def testing(self, saveDir: str, dataset: CDNet2014Dataset | Dataset, saveResult: bool = False):
summaryRecord = SummaryRecord(saveDir, 1, None, self.acc_func, mode='Test')
self.__testing(dataset, summaryRecord=summaryRecord, saveResult=saveResult, saveDir=saveDir)
summaryRecord.export2csv()
def __testing(
self,
dataset: CDNet2014Dataset | Dataset,
summaryRecord: SummaryRecord | None = None,
saveResult: bool = False,
saveDir: str = 'out',
):
if summaryRecord is None:
summaryRecord = self.summaries[-1]
videos_accumulator = OneEpochVideosAccumulator()
self.model.eval()
with torch.no_grad():
video_id: int
features: torch.Tensor
frame: torch.Tensor
label: torch.Tensor
test_iter: Generator[Tuple[torch.Tensor, torch.Tensor]]
self.fix_testing_size(dataset, 0)
if saveResult:
result_opt = ResultOperator(
dataset.data_infos[0], sizeHW=dataset.data_infos[0][1].ROI_mask.shape[-2:], taskDir=saveDir
)
else:
result_opt = lambda *args: None
for next_idx, (video_id, features, test_iter) in enumerate(track(dataset, "Test Video Processing..."), 1):
video_id = torch.tensor(video_id).to(self.device).reshape(1, 1)
features = features.to(self.device).unsqueeze(0)
for i, (frame, empty_frame, label) in enumerate(test_iter):
frame, label = frame.to(self.device).unsqueeze(1), label.to(self.device)
empty_frame = empty_frame.to(self.device).unsqueeze(1)
label = label.to(self.device).unsqueeze(1)
if i != 0:
frame, empty_frame, label, _ = self.test_transforms(frame, empty_frame, label, None)
else:
frame, empty_frame, label, features = self.test_transforms(frame, empty_frame, label, features)
bg_only_img = features[:, 0]
features = self.model.si_encoder(features)
pred, frame, features = self.model(frame, empty_frame, features, bg_only_img)
loss: torch.Tensor = self.loss_func(pred, label)
bg_only_img, pred_mask = self.get_bgOnly_and_mask(frame, pred)
videos_accumulator.batchLevel_matrix[-2] += loss.to('cpu') # batchLevel loss is different with others
videos_accumulator.accumulate(self.eval_measure(label, pred, pred_mask, video_id))
result_opt(pred_mask, pred, features)
if saveResult and next_idx != len(dataset.data_infos):
result_opt = ResultOperator(
dataset.data_infos[next_idx], sizeHW=dataset.data_infos[next_idx][1].ROI_mask.shape[-2:], taskDir=saveDir
)
self.fix_testing_size(dataset, next_idx)
summaryRecord.records(videos_accumulator)
def __validating(self, loader: DataLoader):
videos_accumulator = OneEpochVideosAccumulator()
self.model.eval()
with torch.no_grad():
self.proposed_training_method(loader, videos_accumulator, self.test_transforms, isTrain=False)
self.summaries[1].records(videos_accumulator)
def training(
self,
num_epochs: int,
loader: DataLoader,
val_loader: DataLoader = None,
test_set: CDNet2014Dataset = None,
saveDir: Path = PROJECT_DIR,
early_stop: int = 50,
checkpoint: int = 20,
*args,
**kwargs,
):
# best record create
best_acc_record, best_loss_records = self.best_records[: self.loss_idx], self.best_records[self.loss_idx :]
data_infos = [val_loader, test_set]
checker_active_idx = 1 - data_infos.count(None) # best record priority: test > val
# Summary created
summary_path = f'{saveDir}/summary'
writer = SummaryWriter(summary_path)
for data, name in zip([loader, val_loader, test_set], ['Train', 'Val', 'Test']):
if data is not None:
self.summaries.append(SummaryRecord(summary_path, num_epochs, writer, self.acc_func, mode=name))
isStop = False
for self.epoch in range(num_epochs):
BasicRecord.update_row_id(self.epoch)
CDNet2014Dataset.update_frame_gap(self.epoch)
measure_table = self.create_measure_table()
videos_accumulator = OneEpochVideosAccumulator()
isBest = False
self.model.train()
self.proposed_training_method(loader, videos_accumulator, self.train_transforms, isTrain=True)
self.summaries[0].records(videos_accumulator)
measure_table.add_row('Train', *[f'{l:.3e}' for l in self.summaries[0].batchLevel.last_scores])
for i, (data_info, tasking, name) in enumerate(zip(data_infos, [self.__validating, self.__testing], ['Val', 'Test'])):
if data_info is None:
continue
tasking(data_info)
measure_table.add_row(name, *[f'{l:.3e}' for l in self.summaries[-1].batchLevel.last_scores])
if i != checker_active_idx:
continue
best_loss_checker = best_loss_records > self.summaries[-1].overall.last_scores[self.loss_idx :]
best_loss_records[best_loss_checker] = self.summaries[-1].overall.last_scores[self.loss_idx :][best_loss_checker]
best_acc_checker = best_acc_record < self.summaries[-1].overall.last_scores[: self.loss_idx]
best_acc_record[best_acc_checker] = self.summaries[-1].overall.last_scores[: self.loss_idx][best_acc_checker]
if best_acc_checker.any() or best_loss_checker.any():
self.best_epoch = self.epoch
isBest = True
self.console.print(measure_table)
# * Save Stage
isCheckpoint = self.epoch % checkpoint == 0
isStop = early_stop == (self.epoch - self.best_epoch) or num_epochs == (self.epoch + 1)
save_path_heads: List[str] = []
save_path = f'loss-{self.summaries[-1].overall.last_scores[-1]:.3e}_F1-{self.summaries[-1].overall.last_scores[3]:.3f}'
if isCheckpoint:
save_path_heads.append(f'checkpoint_e{self.epoch:03}')
if isBest:
save_path_heads.extend(
[f'bestLoss-{name}' for name, is_best in zip(LOSS_NAMES, best_loss_checker) if is_best],
)
save_path_heads.extend(
[f'bestAcc-{name}' for name, is_best in zip(ACC_NAMES, best_acc_checker) if is_best],
)
if isStop:
save_path_heads.append(f'final_e{self.epoch:03}_')
for i, path_head in enumerate(save_path_heads):
if i == 0:
epoch_path = f'e{self.epoch:03}_{save_path}'
self.save(self.model, str(saveDir / epoch_path))
print(f"Save Model: {str_format(str(epoch_path), fore='g')}")
[summary.export2csv() for summary in self.summaries]
path: Path = saveDir / f'{path_head}.pt'
path.unlink(missing_ok=True)
path.symlink_to(f'{epoch_path}.pt')
print(f"symlink: {str_format(str(path_head), fore='y'):<36} -> {epoch_path}")
if isStop:
print(str_format("Stop!!", fore='y'))
break
def proposed_training_method(
self,
loader: DataLoader,
videos_accumulator: OneEpochVideosAccumulator,
transforms: IterativeCustomCompose,
isTrain: bool = True,
):
video_id: torch.IntTensor
features: torch.Tensor
frames: torch.Tensor
empty_frames: torch.Tensor
labels: torch.Tensor
for video_id, frames, empty_frames, labels, features in tqdm(loader):
video_id = video_id.to(self.device).unsqueeze(1)
features = features.to(self.device)
frames = frames.to(self.device)
empty_frames = empty_frames.to(self.device)
labels = labels.to(self.device)
with torch.no_grad():
frames, empty_frames, labels, features = transforms(frames, empty_frames, labels, features)
bg_only_imgs = features[:, 0]
features = self.model.si_encoder(features)
# losses = torch.zeros(frames.shape[1], dtype=torch.float32, device=self.device)
step_noDetachMEM = frames.shape[1] - 1
for step in range(frames.shape[1]):
isDetachMEM = 1 - (step // step_noDetachMEM)
frame, empty_frame, label = frames[:, step], empty_frames[:, step], labels[:, step]
# features = features.detach() # create a new tensor to detach previous computational graph
pred: torch.Tensor
frame: torch.Tensor
pred, frame, features = self.model(frame, empty_frame, features, bg_only_imgs, isDetachMEM)
loss: torch.Tensor = self.loss_func(pred, label)
if isTrain:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
with torch.no_grad():
bg_only_imgs, pred_mask = self.get_bgOnly_and_mask(frame, pred)
videos_accumulator.batchLevel_matrix[-2] += loss.item() # batchLevel loss is different with others
videos_accumulator.accumulate(self.eval_measure(label, pred, pred_mask, video_id))
def get_bgOnly_and_mask(self, frame: torch.Tensor, pred: torch.Tensor):
pred_mask = torch.where(pred > self.eval_measure.thresh, 1, 0).type(dtype=torch.int32)
bg_only_imgs = frame * (1 - pred)
return bg_only_imgs, pred_mask
def save(self, model: Model | nn.Module, path: str, isFull: bool = False):
if isFull:
torch.save(model, f'{path}.pt')
torch.save(self.optimizer, f'{path}_{self.optimizer.__class__.__name__}.pt')
else:
torch.save(model.state_dict(), f'{path}.pt')
torch.save(self.optimizer.state_dict(), f'{path}_{self.optimizer.__class__.__name__}.pt')
@staticmethod
def load(path: str, model: nn.Module = None, optimizer: optim.Optimizer = None, isFull: bool = False, device: str = 'cpu'):
model: nn.Module
optimizer: optim.Optimizer
path = str(Path(path).resolve())
optimizer_path = f'{path[:-3]}_{optimizer.__class__.__name__}.pt'
if isFull:
model = torch.load(path)
optimizer = torch.load(optimizer_path)
else:
model.load_state_dict(mapping_new_weight_key(torch.load(path, map_location=device)))
if Path(optimizer_path).exists():
optimizer.load_state_dict(torch.load(optimizer_path, map_location=device))
return model, optimizer
def mapping_new_weight_key(weights: OrderedDict[str, torch.Tensor]):
"""
The function `mapping_new_weight_key` updates keys in an OrderedDict based on a predefined
replacement dictionary.
Args:
weights (OrderedDict[str, torch.Tensor]): An OrderedDict containing keys of type str and values of
type torch.Tensor.
Returns:
The function `mapping_new_weight_key` returns an `OrderedDict` where some keys have been updated
based on the `replace_dict` mapping provided in the function. Keys that match the keys in the
`replace_dict` are replaced with the corresponding values specified in the `replace_dict`, while
other keys remain unchanged.
"""
update_key_model = OrderedDict()
replace_dict = {
'erd_model': (len('erd_model'), 'si_encoder'),
'me_model': (len('me_model'), 'fp_model'),
}
for k, v in weights.items():
noReplace = True
for replace_key, replace_info in replace_dict.items():
if replace_key == k[: replace_info[0]]:
update_key_model[k.replace(replace_key, replace_info[1])] = v
noReplace = False
break
if noReplace:
update_key_model[k] = v
return update_key_model
class Parser:
SE_Net: nn.Module | BackBone
FP_Net: nn.Module | BackBone
SF_Net: nn.Module | Model
DEVICE: int
LOSS: nn.Module | Loss
OPTIMIZER: torch.optim
LEARNING_RATE: float
BATCH_SIZE: int
NUM_EPOCHS: int
NUM_WORKERS: int
CV_SET: int
SIZE_HW: Tuple[int]
DATA_SPLIT_RATE: float
useTestAsVal: bool
DO_TESTING: bool
testFromBegin: bool
saveTestResult: bool
PRETRAIN_WEIGHT: str
OUT: str
def convertStr2Parser(
se_network: str = 'UNetVgg16',
fp_network: str = 'UNetVgg16',
sf_network: str = 'SeqFeedNet',
loss_func: str = 'IOULoss4CDNet2014',
optimizer: str = '',
learning_rate: float = 1e-4,
weight_decay: float = 0,
num_epochs: int = 0,
batch_size: int = 8,
num_workers: int = 1,
cv_set_number: int = 1,
img_sizeHW: str = '224-224',
data_split_rate: float = 1.0,
use_test_as_val: bool = False,
device: int = 0,
do_testing: bool = False,
test_from_begin: bool = True,
save_test_result: bool = False,
pretrain_weight: str = '',
output: str = '',
):
'''
Args
se_network: "Sequence Extract Network",
fp_network: "Mask Extract Network",
sf_network: "Sequence to mask Network",
loss_func: "Please check utils/evaluate/losses.py to find others",
optimizer: "Optimizer that provide by Pytorch",
learning_rate: "Learning Rate for optimizer",
weight_decay: "Weight Decay for optimizer"
num_epochs: "Number of epochs",
batch_size: "Number of batch_size",
num_workers: "Number of workers for data processing",
cv_set_number: "Cross validation set number for training and test videos will be selected",
img_sizeHW: "Image size for training",
data_split_rate: "Split data to train_set & val_set",
use_test_as_val: "Use test_data as validation data, use this flag will set '--data_split_rate=1.0'",
device: "CUDA ID, if system can not find Nvidia GPU, it will use CPU",
do_testing: "Do testing evaluation is a time-consuming process, suggest not do it",
test_from_begin: "Do testing evaluation from beginning"
save_test_result: "Save testing all the result"
pretrain_weight: "Pretrain weight, model structure must same with the setting",
output: "Model output directory"
'''
parser = Parser()
module_locate = sys.modules[__name__]
parser.OUT = output
parser.DEVICE = get_device(device)
#! ========== Network ==========
parser.PRETRAIN_WEIGHT = pretrain_weight
if pretrain_weight != '' and 'cv' not in pretrain_weight.split('/')[-1]: # general & paper_proposed
sf_network, nets = pretrain_weight.split('/')[-2].split('_')[-5].split('.')
se_network, fp_network = nets.split('-')
parser.SE_Net: nn.Module | BackBone = getattr(module_locate, se_network)
parser.FP_Net: nn.Module | BackBone = getattr(module_locate, fp_network)
parser.SF_Net: nn.Module | Model = getattr(module_locate, sf_network)
#! ========== Hyperparameter ==========
if optimizer == '':
if pretrain_weight == '' or 'cv' in pretrain_weight.split('/')[-1]: # general or paper_proposed
optimizer = 'Adam'
else:
optimizer = re.match(r'^[A-Za-z]+', pretrain_weight.split('/')[-2].split('_')[-4]).group(0)
parser.OPTIMIZER: optim = getattr(optim, optimizer)
parser.LEARNING_RATE = learning_rate
parser.WEIGHT_DECAY = weight_decay
parser.LOSS: nn.Module | Loss = getattr(module_locate, loss_func)
parser.NUM_EPOCHS = num_epochs
parser.BATCH_SIZE = batch_size
#! ========== Dataset ==========
parser.NUM_WORKERS = num_workers
parser.CV_SET = cv_set_number
parser.DO_TESTING = do_testing
parser.testFromBegin = test_from_begin
parser.saveTestResult = save_test_result
parser.useTestAsVal = use_test_as_val
parser.SIZE_HW = tuple(map(int, img_sizeHW.split('-')))
if use_test_as_val is True:
parser.DATA_SPLIT_RATE = 1.0
else:
parser.DATA_SPLIT_RATE = data_split_rate
return parser
def execute(parser: Parser):
# random.seed(42)
# torch.manual_seed(42)
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(42)
#! ========== Hyperparameter ==========
EARLY_STOP = -1
CHECKPOINT = 10
#! ========== Augmentation ==========
train_trans_cpu = CustomCompose(
[
transforms.RandomChoice(
[
RandomCrop(crop_size=parser.SIZE_HW, p=1.0),
RandomShiftedCrop(parser.SIZE_HW, max_shift=5, p=1.0),
RandomResizedCrop(parser.SIZE_HW, scale=(0.6, 1.8), ratio=(3.0 / 5.0, 2.0), p=0.9),
PTZZoomCrop(parser.SIZE_HW, overlap_time=10, max_pixelMove=5, p4targets=0.75, p4others=0.9),
PTZPanCrop(parser.SIZE_HW, overlap_time=10, max_pixelMoveH=3, max_pixelMoveW=3, p4targets=0.75, p4others=0.9),
],
p=(0.25, 0.25, 0.25, 0.25 * 0.25, 0.25 * 0.75),
),
# AdditiveColorJitter(brightness=0.5, contrast=0.2, saturation=0.2, hue=0.075, p=0.9),
# GaussianNoise(sigma=(0, 0.01)),
# # RandomHorizontalFlip(0.5),
# # RandomVerticalFlip(0.5),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
test_trans_cpu = transforms.Compose(
[
transforms.Resize(parser.SIZE_HW, antialias=True),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
train_trans_onGPU_ls = [
AdditiveColorJitter(brightness=0.5, contrast=0.2, saturation=0.2, hue=0.075, p=0.9),
GaussianNoise(sigma=(0, 0.01)),
RandomHorizontalFlip(0.5),
# RandomVerticalFlip(0.5),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
test_trans_onGPU_ls = [
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
train_iter_compose = IterativeCustomCompose(train_trans_onGPU_ls, target_size=parser.SIZE_HW)
test_iter_compose = IterativeCustomCompose(test_trans_onGPU_ls, target_size=parser.SIZE_HW)
#! ========== Datasets ==========
dataset_cfg = DatasetConfig()
dataset_cfg.num_epochs = parser.NUM_EPOCHS
train_loader, val_loader, test_set = get_data_LoadersAndSet(
dataset_cfg=dataset_cfg,
cv_set=parser.CV_SET,
dataset_rate=parser.DATA_SPLIT_RATE,
batch_size=parser.BATCH_SIZE,
num_workers=parser.NUM_WORKERS,
pin_memory=True,
train_transforms_cpu=train_trans_cpu,
test_transforms_cpu=test_trans_cpu,
label_isShadowFG=False,
useTestAsVal=parser.useTestAsVal,
onlyTest=parser.NUM_EPOCHS == 0,
testFromBegin=parser.testFromBegin,
)
#! ========== Network ==========
se_model: nn.Module = parser.SE_Net(4, 3) if '3D' in parser.SE_Net.__name__ else parser.SE_Net(12, 9)
fp_model: nn.Module = parser.FP_Net(15, 1)
SF_Net: nn.Module = parser.SF_Net(se_model, fp_model).to(parser.DEVICE)
optimizer: optim.Optimizer = parser.OPTIMIZER(SF_Net.parameters(), lr=parser.LEARNING_RATE, weight_decay=parser.WEIGHT_DECAY)
loss_func: nn.Module = parser.LOSS(reduction='mean')
#! ========== Load Pretrain ==========
if parser.PRETRAIN_WEIGHT != '':
SF_Net, optimizer = Processor.load(parser.PRETRAIN_WEIGHT, SF_Net, optimizer, device=parser.DEVICE)
#! ========= Create saveDir ==========
split_id = parser.PRETRAIN_WEIGHT.rfind('/') + 1
saveDir = 'out/' if parser.PRETRAIN_WEIGHT == '' else parser.PRETRAIN_WEIGHT[:split_id]
if parser.NUM_EPOCHS == 0 and parser.DO_TESTING: # only testing
saveDir += f'{parser.OUT}_' if parser.OUT != '' else ''
path = Path(parser.PRETRAIN_WEIGHT)
if path.is_symlink():
saveDir += f'{parser.PRETRAIN_WEIGHT[split_id:].split("_")[0]}_'
path = str(path.readlink())
else:
path = parser.PRETRAIN_WEIGHT[split_id:]
saveDir += path.split('_')[0]
else:
model_name = f'{SF_Net.__class__.__name__}.{se_model.__class__.__name__}-{fp_model.__class__.__name__}'
optimizer_name = f'{optimizer.__class__.__name__}{optimizer.defaults["lr"]:.1e}.wd{parser.WEIGHT_DECAY}'
saveDir += f'{time.strftime("%m%d-%H%M")}_{parser.OUT}_{model_name}_{optimizer_name}_{str(loss_func)}_BS-{parser.BATCH_SIZE}_Set-{parser.CV_SET}'
check2create_dir(saveDir)
#! ========== Model Setting ==========
processor = Processor(
SF_Net,
optimizer,
train_iter_compose,
test_iter_compose,
device=parser.DEVICE,
loss_func=loss_func,
eval_measure=EvalMeasure(0.5, parser.LOSS(reduction='none')),
)
#! ========== Testing Evaluation ==========
if parser.NUM_EPOCHS == 0 and parser.DO_TESTING:
print(str_format("Testing Evaluate!!", fore='y'))
processor.testing(saveDir, test_set, parser.saveTestResult)
exit()
#! ========== Training Process ==========
processor.training(
parser.NUM_EPOCHS,
train_loader,
val_loader,
test_set if parser.DO_TESTING else None,
Path(saveDir),
EARLY_STOP,
CHECKPOINT,
)
if __name__ == '__main__':
parser = convertStr2Parser()
execute(parser)