-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTSP_PSO.py
executable file
·106 lines (80 loc) · 3.39 KB
/
TSP_PSO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import operator
import random
import numpy
import tsplib
from deap import base
from deap import creator
from deap import tools
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Particle", list, fitness=creator.FitnessMin, speed=list,
smin=None, smax=None, best=None)
# Optimal solutions are : gr17 = 2085, gr24 = 1272, gr120 = 6942
problemname ='gr24'
[NDIM, dMat, _, _] = tsplib.read_tsplib2(problemname)
def eval_fitness(individual):
length = tsplib.length(individual, dMat)
return length,
def randomkey2tour(part):
temp = numpy.array(part)
permpart = numpy.argsort(-temp) + 1
return permpart.tolist()
def generate(size, pmin, pmax, smin, smax):
part = creator.Particle(random.uniform(pmin, pmax) for _ in range(size))
part.speed = [random.uniform(smin, smax) for _ in range(size)]
part.smin = smin
part.smax = smax
return part
def updateParticle(part, best, phi1, phi2):
u1 = (random.uniform(0, phi1) for _ in range(len(part)))
u2 = (random.uniform(0, phi2) for _ in range(len(part)))
v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part))
v_u2 = map(operator.mul, u2, map(operator.sub, best, part))
part.speed = list(map(operator.add, part.speed, map(operator.add, v_u1, v_u2)))
for i, speed in enumerate(part.speed):
if speed < part.smin:
part.speed[i] = part.smin
elif speed > part.smax:
part.speed[i] = part.smax
part[:] = list(map(operator.add, part, part.speed))
toolbox = base.Toolbox()
toolbox.register("particle", generate, size=NDIM, pmin=-6, pmax=6, smin=-3, smax=3)
toolbox.register("population", tools.initRepeat, list, toolbox.particle,n=100)
toolbox.register("update", updateParticle, phi1=2.0, phi2=2.0)
# toolbox.register("evaluate", benchmarks.h1)
# register objective function with the "evaluate" alias to the toolbox
toolbox.register("evaluate", eval_fitness)
def main():
pop = toolbox.population()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
GEN = 1000
best = None
for g in xrange(GEN):
print "-- Generation %i --" %g
for part in pop:
permpart = randomkey2tour(part)
part.fitness.values = toolbox.evaluate(permpart)
if not part.best or part.fitness.values < part.best.fitness.values:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
if not best or part.fitness.values < best.fitness.values:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best)
# Gather all the fitnesses in one list and print the stats
# logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
# print(logbook.stream)
bestint = []
newlist = randomkey2tour(best)
for element in newlist:
bestint.append(int(element))
print bestint, toolbox.evaluate(bestint)
return pop, logbook, best
if __name__ == "__main__":
main()